
Instituto Tecnológico Autónomo de México

Un algoritmo con fundamentos

teóricos para resolver Sudokus

Tesis

para obtener el t́ıtulo de

Licenciado en Matemáticas Aplicadas

presenta

Esteban Mart́ınez Licón

Asesor

Dr. Andreas Wachtel

CIUDAD DE MÉXICO 2022



“Con fundamento en los art́ıculos 21 y 27 de la Ley Federal del Derecho de

Autor y como titular de los derechos moral y patrimonial de la obra titulada

“Un algoritmo con fundamentos teóricos para resolver Sudokus”,

otorgo de manera gratuita y permanente al Instituto Tecnológico Autónomo

de México y a la Biblioteca Raúl Bailléres Jr., la autorización para que fijen

la obra en cualquier medio, incluido el electrónico, y la divulguen entre sus

usuarios, profesores, estudiantes o terceras personas, sin que pueda percibir

por tal divulgación una contraprestación”.

Esteban Mart́ınez Licón

Fecha

Firma



M I

Agradecimientos

Cuando terminé prepa no encontré palabras para darles las gracias a mis

papás por todo lo que hab́ıan hecho por mı́. Hoy me considero más letrado

que hace 5 años pero todav́ıa soy incapaz de darles las gracias con palabras.

Sospecho que, sin importar mi nivel académico, nunca voy a encontrar en

mi vocabulario algo digno de un agradecimiento hacia ustedes.

Gracias Bárbara, por manipular conciente e inconcientemente cada una de

mis deciciones académicas. Gracias por ponerle la vara muy alta a mis

otros modelos a seguir.

Gracias Andreas por la pasión con la que te entregaste a este trabajo.

La primer Macintosh tiene una placa adentro con los nombres de las per-

sonas que la hicieron.

Claudia Maŕıa Licón Ávila

Jorge Bernardo Mart́ınez Aguilar



M II

Resumen

Esta tesis aporta dos contribuciones principales, un algoritmo de código

abierto Solveku que es capaz de resolver cualquier sudoku, y una teoŕıa del

sudoku que crea un modelo matemático del acertijo.

Solveku está compuesto por seis técnicas que emulan técnicas humanas

para resolver sudokus y combinadas son capaces de resolver cualquier su-

doku. En la tesis descomponemos cada técnica en un análisis que se divide

en tres partes. La primera parte es la explicación que simplemente describe

la técnica desde un punto de vista pedagógico con la intención de mostrar al

lector la motivación detrás de ésta. La segunda parte es la teoŕıa del sudoku

relacionada a la técnica, esta sección contiene el fundamento matemático de

la técnica aśı como una prueba utilizando la teoŕıa para demostrar la validez

de la técnica. Al hablar de validez nos referimos al contexto del acertijo,

es decir, demostramos que la técnica de ninguna manera nos puede llevar

a una solución errónea. Finalmente, la tercera parte del análisis contiene

una implementación en Python de la técnica con una breve descripción del

código y un análisis de complejidad computacional.

Después de describir todas las técnicas que componen Solveku, empieza

la parte estad́ıstica de la tesis. En primer lugar, hacemos un estudio de

Solveku por śı mismo, es decir aplicamos el algoritmo a múltiples sudokus

y vemos qué técnicas son las más utilizadas. Posteriormente, comparamos

el comportamiento de Solveku contra los algoritmos más populares para

resolver sudokus en internet.



III

La teoŕıa de sudoku se desarrolla a la par de las técnicas de Solveku y

su objetivo principal es demostrar la validez de cada una de las técnicas

del algoritmo. Sin embargo, consideramos que nuestra teoŕıa de sudoku

es una contribución autónoma puesto que sus beneficios no tienen porqué

estar limitados a Solveku. La teoŕıa describe sudoku como un modelo

matemático, y ésta puede ser usada para cualquier análisis matemático del

acertijo, no limitado al desarrollo de algoritmos.

Finalmente, el algoritmo Solveku tiene varias contribuciones que repre-

sentan una verdadera innovación en el contexto de sudokus. En primer

lugar el algoritmo resuelve sudokus de tamaño n por n, en vez de limitarse

al tamaño clásico de 3 por 3, lo cual nos permitió hacer un análisis de com-

plejidad computacional en la implementación de las técnicas de Solveku.

Además, limitando el algoritmo al clásico 3 por 3, éste resulta más efi-

ciente que los algoritmos más populares disponibles en internet. Por otro

lado, el algoritmo es de código abierto, esto no tiene precedentes ya que los

algoritmos que resuelven sudokus emulando técnicas humanas son renta-

bles pues también sirven para generar sudokus. Por último, la mayor con-

tribución de este trabajo se da gracias a la combinación de la teoŕıa y el

algoritmo Solveku, ya que esta combinación nos permitió demostrar que

Solveku está matemáticamente fundamentado y aśı probar que es capaz de

resolver cualquier sudoku.



M IV

Contents

Symbols VI

1 Introduction 2

1.1 The puzzle . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The history . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Theory introduction . . . . . . . . . . . . . . . . . . . . . . 8

1.4 The mathematics of sudoku . . . . . . . . . . . . . . . . . . 19

1.5 Solving Algorithms . . . . . . . . . . . . . . . . . . . . . . . 25

2 Attesting stages of Solveku 27

2.1 Fundamental code . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Stage One, Singletons . . . . . . . . . . . . . . . . . . . . . 42

2.3 Stage Two, Hermit . . . . . . . . . . . . . . . . . . . . . . . 49

3 Pruning sections of Solveku 56

3.1 Stage Three, Bracket Intersection . . . . . . . . . . . . . . . 57

3.2 Stage Four, Bracket subset . . . . . . . . . . . . . . . . . . 70

3.3 Stage Five, Orthogonal subsets . . . . . . . . . . . . . . . . 97

4 The Solveku Algorithm 119

4.1 Backtracking . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.2 Sudoku theory . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.3 Structure of the algorithm . . . . . . . . . . . . . . . . . . . 129

4.4 Performance of the algorithm . . . . . . . . . . . . . . . . . 134



Contents V

5 Conclusions 146

5.1 Why and how . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.2 Contributions and impact . . . . . . . . . . . . . . . . . . . 148



M VI

Symbols

The following list collects symbols that are used or defined in this work.

n perfect square, size of the sudoku puzzle (see

page 2).

I set of indexes (see page 8).

G grid of a Sudoku (see page 8).

Ri ith row of the grid. (see page 11).

Cj jth column of the grid. (see page 11).

Bi ith box of the grid. (see page 11).

Ω set of valid symbols. (see page 11).

γ value function. (see page 12).

Γ set value function. (see page 12).

� restriction of a function. (see page 13).

F0 Fixed initial partition (see page 14).

(n,F0, γ0) sudoku puzzle. (see page 14).

N neighbors function. (see page 28).

AS available set function. (see page 28).

(Fk, γk,ASk) kth setting of a puzzle. (see page 32).

O time complexity’s big O (see page 39).

⊥ Orthogonal intersection between two brack-

ets (see page 99).

Λk Orthogonal intersection function for a setting

(Fk, γk,ASk) (see page 99).



Symbols 1

R Set of rows in an orthogonal subset (see

page 100).

C Set of columns in an orthogonal subset (see

page 100).

R Set of all the rows in a grid G (see page 106).

C Set of all the columns in a grid G (see

page 106).



M 2

Chapter 1

Introduction

In this work, we present Solveku, an algorithm capable of solving any su-

doku puzzle, more efficiently than common solving algorithms. Further-

more, we introduce a sudoku theory, a body of knowledge based on defini-

tions that allow us to establish a mathematical model for the puzzle.

We deeply explain how Solveku works, and based on our sudoku theory,

we will prove that it solves every puzzle. Finally, we will test our algorithm

exhaustively to understand how it behaves and compare its performance

against the most popular solving algorithms available.

1.1 The puzzle

Sudoku is a combinatorial number-placement puzzle; its solving is com-

pletely based on logic. The puzzle is made up of a n×n grid where
√
n ∈ N,

which contains inside n different
√
n×
√
n subgrids we call boxes. The ob-

jective of the puzzle is to fill the grid with numbers from 1 to n, so that each

row, each column, and each box have a single appearance of each number.

For the classic sudoku n = 9, therefore, it is a 9 × 9 grid and should

be filled with numbers from 1 to 9. The puzzle begins with a partially

completed grid that should have a valid unique solution. The numbers



1. Introduction 3

that pre-fill the grid by the puzzle setter are called hints. Typically, there

is an inverse relationship between the number of hints and the difficulty of

the puzzle, meaning the more hints a sudoku has, the easier it is to solve.

The puzzle has become widely popular, and it is a non-discriminatory

puzzle, meaning that the puzzler does not need any kind of requirements

or specific knowledge to complete the puzzle, only a pencil and some logic.

This work may seem to be out of time, since most of the academic work

related to sudoku puzzles was done between 2005 and 2015 for the simple

reason that it was then when the puzzle became a global outbreak. As

Sivamani once said, “It is never too late to do anything new when it comes

to art”.



1. Introduction 4

1.2 The history

1.2.1 The etymology

Even though the origin of the puzzle is not clear, we called the 9 × 9 grid

the classical sudoku because it was the one that gained popularity in the

1980’s thanks to the Japanese puzzle publisher Nikoli. Nikoli has been

publishing puzzles since 1980, they currently hold the Guinness Record

for the largest crossword puzzle. Besides that, they claim to have coined

the sudoku puzzle, and their founder Maki Kaji is widely known as “The

godfather of sudoku” [Cam21].

Kaji hardly invented the sudoku puzzle, but he had a major role in

popularizing the game, and naming it [Bel21]. Sudoku is shortened from

Suuji wa dokushin ni kagiru which means “digits should remain single”. In

fact, numbers are unrelated to the puzzle since they only play the part as

symbols that should not be repeated, there is no condition between them

so a sudoku could be played with any different symbols. That is why, in

spite of numbers being involved, arithmetic is useless for solving the puzzle.

1.2.2 The outbreak

Even though the origin of the sudoku puzzle is very unclear, it is very likely

that Latin Squares were it’s first predecessor, since both share the same

non-repeating symbol principle. The name ”latin square” was inspired by

the mathematician Leonard Euler [WW11].

Definition 1.2.1. A latin square is an n× n array which is filled with n

different symbols, with n ∈ N. Where each row and column contains all of

the n symbols.

The name was given because Euler used Latin characters as symbols to



1. Introduction 5

fill the latin square. Euler began the general theory of Latin Squares which

nowadays has a lot of applications in statistics and mathematics.

Corollary 1.2.2. A finished sudoku puzzle is a Latin square.

In fact all finished sudokus are a subset of all the Latin Squares, this is

because the no repetition rule in rows and columns is the same in both,

however sudokus add that rule to boxes as well.

The applications of Latin square in statistics were leaded by Sir Ronald

Fisher, in fact, in his book The Design of Experiments, published in 1935,

which is considered a foundational work on experiment design, the whole

fifth chapter is dedicated to Latin Squares. [Fis74].



1. Introduction 6

Figure 1.1: Sir Ronald Fisher window in Cambridge, showing a latin square,

right below the Venn window [San09](The window was removed

due to Fisher’s support of Euginic ideas).

Before sudoku’s worldwide fame, in the late 1970s, besides Nikoli, Dell

Puzzle Magazines was quietly producing a very similar puzzle called Num-

ber Place.

The global outbreak happened almost 20 years after that, when a judge

from New Zealand called Wayne Gould was shopping at a bookstore in

Tokyo, after recently moving to Honk Kong. While in the bookstore, Gould

found a sudoku puzzle from Nikoli.

Gould became fascinated by the puzzle and spent the next six years of



1. Introduction 7

his life developing an algorithm named Pappocom that could create sudoku

puzzles [Smi05]. He let hundreds of newspapers around the world run his

Pappocom sudoku puzzles free in return for promoting Gould’s computer

program and books [Sho06]. Since his action popularized the sudoku puzzle,

he became one of Time’s Magazine 100 World’s most influential people of

2006. Gould also has spent some time developing solving techniques for

sudokus, one of which we use in Solveku.

After being propagated by several magazines and newspapers, thanks to

Gould, this puzzle spread with an incredibly rapid worldwide rise.

Thousands of books and software related to the puzzle have been pub-

lished. It was featured on game consoles such as the Nintendo DS. A

simple search on GitHub, the Internet hosting for software development,

yields more than 56 thousand results of repositories related to the puzzle.

In 2008 when Apple, the American multinational technology company,

launched its App store, the first application store that allows third parties

to develop software for the company’s mobile devices. Just two weeks after

the launch, about 30 different apps were made that feature the sudoku

puzzle.

In June of that same year, 105 witnesses and three months of evidence

were wasted because a drug trial costing 1 million dollars was aborted when

it emerged that jurors had been playing sudoku since the trial’s second

week. This was possible due to the fact that the puzzle only requires a

paper, a pen, and concentration which may lead to think that a person is

taking notes rather than filling a sudoku Grid. Even the author of these

pages took advantage of this trick during the 2 hour Friday lectures on

Investigation methodology on his senior year of high school.



1. Introduction 8

1.3 Theory introduction

In this chapter we introduce all the foundational concepts of our sudoku

theory. Definitions and affirmations are made for an n × n grid, where n

is a perfect square, which means that
√
n is a natural number. However,

the examples will be done on a classic-size sudoku, n = 9, just for visual

simplicity and because that is the standard size of sudoku puzzles.

For the ordering of the grid, we start counting indexes on zero because

in most of the programming languages the start index for arrays is zero,

so it simplifies the correspondence with the code implementation. Let I =

{0, 1 . . . n− 1} be the set of indexes.

Definition 1.3.1. We define a Grid G as the following Cartesian product

G = I × I. The elements of G, (i, j) i, j ∈ I will be called cells. To refer

to a specific cell, we will use the notation cellij = (i, j) ∈ G .

Each occurrence of a double stroked letter in this work, such as G, will

denote a set of cells, that is, a subset of G. In this way, it will be easier to

recognize and differentiate a set of cells from a number or a set of numbers.



1. Introduction 9

0 1 2 3 4 5 6 7 8

0  
1  
2  
3

4  
5  
6  
7  
8  

           

Figure 1.2: A sudoku grid with the cell34 highlighted.

Next, we will define the concept of row and column, which are quite

essential in the rules of the puzzle. We will also state and index the concept

of the box. The boxes are the little
√
n×
√
n subgrids, which arise as the

only difference between a sudoku and a Latin square.

Similarly to rows and columns, the boxes will also be indexed by I. Now,

to formally identify a box, we will start with a function that separates and

groups cells by the box to which they belong. Note that the creation of

boxes of equal size n is possible and guaranteed because n is a perfect

square. For an n× n grid, there will be n different boxes. The indexation

order will go from top to bottom and from left to right, as shown in Figure

1.3.



1. Introduction 10

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

0  1  2
3  4  5
6  7  8

Figure 1.3: A classical sudoku grid with labeled boxes.

Definition 1.3.2. We define bof : G → I as the function that assigns the

corresponding box index to a particular cell:

bof(cellij) =
√
n

⌊
i√
n

⌋
+

⌊
j√
n

⌋
for all i, j ∈ I.

Notice that the fact that
√
n is a natural number implies that bof(cellij)

is also a natural number and that bof(cellij) ∈ I for all i, j ∈ I.

Let us verify the bof function with a few examples.

Example 1.3.3. In a classical sudoku grid (n = 9), the first cell of the



1. Introduction 11

grid, the cell cell00 should be in the first box, that is, the box with index 0.

bof(cell00) =
√
n

⌊
0√
n

⌋
+

⌊
0√
n

⌋
=
√

9

⌊
0√
9

⌋
+

⌊
0√
9

⌋
= 3

⌊
0

3

⌋
+

⌊
0

3

⌋
= 0.

Now, let us say that the cell45, again in the original grid, relies right next

to the center of the grid, still in the center box, and therefore it belongs

to the box number 4, since the indexation begins at 0, and there are three

boxes above and one on the left.

bof(cell45) =
√
n

⌊
4√
n

⌋
+

⌊
5√
n

⌋
=
√

9

⌊
4√
9

⌋
+

⌊
5√
9

⌋
= 3

⌊
4

3

⌋
+

⌊
5

3

⌋
= 3 + 1 = 4.

Definition 1.3.4. For all i, j ∈ I, we define:

The ith Row Ri ⊆ G as follows: Ri = {cellik : ∀k ∈ I}.

The jthColumn Cj ⊆ G as follows: Cj = {cellkj : ∀k ∈ I}.

The ith Box Bi ⊆ G as follows: Bi = {cell ∈ G : bof(cell) = i}.

Also, we say that a subset S of G is a bracket if there exists i ∈ I such

that S = Ri or S = Ci or S = Bi.

The grouping of rows, columns, and boxes in the concept of brackets

will be very useful because there are several properties that apply to all

brackets regardless of the type.

Now that we have defined the visual elements of the grid, we can focus on

the puzzle itself. The objective of the puzzle is to fill the grid with symbols

that follow specific rules. Then, each cell will eventually be related with a

unique symbol. Therefore, the next step is to assign a relationship between

each cell and a symbol.

First, let Ω be the set of symbols that will fill the grid; in fact, Ω can

be any set of n different symbols, but for simplicity and because it is a



1. Introduction 12

common practice, we define it as the following set: Ω = {1, 2, . . . , n}. Note

that unlike I, Ω starts with 1 just like any sudoku puzzle out there.

Now, we address the relationship between G and Ω. As with any re-

lationship in mathematics, it will be done through a function. The next

definition refers to a function that assigns values of Ω to each cell in G.

Note that at the beginning of the puzzle there are some values of cells that

are momentarily unknown. Therefore, we define this relationship for any

subset of G.

Definition 1.3.5. We define a value function as a function that assigns

cells in S ⊂ G to a particular value in Ω. We denote it by γ : S ⊆ G→ Ω.

Given this relationship between a cell and a symbol, it will also be useful

to have the equivalent for a set of cells. Meaning, for a set of cells, we next

define a function that returns a set of the values associated with these cells.

Definition 1.3.6. Given a value function γ : S→ Ω, we define its set as-

sociated value function Γ as follows, Γ(X) = {ω ∈ Ω : there exists cell ∈
X that γ(cell) = ω} for every X ⊂ G.

The set-associated value function will only be used for brackets, so that

we can tell which values are already in a bracket, since, as we will see in

the rules, no values should be repeated in brackets.



1. Introduction 13

0 1 2 3 4 5 6 7 8

0 1  
1 7 2  
2 3 1  
3

4  
5  
6  
7 6  
8  

           

Figure 1.4: Grid with a value function.

Example 1.3.7. In Figure 1.4 we have a grid with a value function:

γ(cellij) =



1 if (i, j) ∈ {(0, 2), (2, 5)}

7 if (i, j) = (1, 1)

2 if (i, j) = (1, 5)

3 if (i, j) = (2, 2)

6 if (i, j) = (7, 7)

Then, for instance, Γ(R0) = {1}, Γ(R1) = {2, 7}, and Γ(B0) = {1, 3, 7}.

Definition 1.3.8. Let f : X → Y be a function, let X0 ⊆ X we say that



1. Introduction 14

f0 : X0 → Y is a restriction of f if the following condition holds true:

• f(x0) = f0(x0) for all x0 ∈ X0

We use the notation f0 � f for stating that f0 is a restriction of f .

Restriction is a concept that is widely used in linear algebra and specifi-

cally in vector spaces. In this work we will restrict its definition to functions

which helps us establish relationships between different value functions.

Definition 1.3.9. A sudoku puzzle consists in the following three parts.

• A perfect square n, such that
√
n is a natural number.

• An initial condition of the puzzle as follows, a set of cells F0 ⊂ G
that have a fixed associated value of Ω.

• An initial value function γ0 : F0 → Ω.

We will use the following notation for a sudoku puzzle: (n,F0, γ0).

Example 1.3.10. In Figure 1.5 we have the following initial state: F0 =

{cell06, cell13, cell25, cell33, cell78}. Note that all cells in F0 are colored blue.

γ0(cellij) =



3 if (i, j) = (0, 6)

5 if (i, j) = (1, 3)

1 if (i, j) = (2, 5)

3 if (i, j) = (3, 3)

4 if (i, j) = (7, 1)



1. Introduction 15

0 1 2 3 4 5 6 7 8

0 3  
1 5  
2 1  
3 3
4  
5  
6  
7 4  
8  

           

Figure 1.5: Representing the sudoku puzzle in Example 1.3.10.

Definition 1.3.11. Given a sudoku puzzle (n,F0, γ0), a solution is a value

function γ : G→ Ω that satisfies the following properties:

• γ0 is a restriction of γ.

• |Γ(Ri)| = n ∀i ∈ I, that is, each row contains every number in Ω.

• |Γ(Cj)| = n ∀j ∈ I, that is, each column contains every number in

Ω.

• |Γ(Bi)| = n ∀i ∈ I, that is, each box contains every number in Ω.



1. Introduction 16

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0 9 3  0 7 9 6 8 1 5 4 2 3  
1 2 6 5  1 3 2 8 7 6 4 1 9 5  
2 1 9 2 7  2 4 1 5 3 9 2 7 8 6  
3 3 1 7 2 6 3 8 5 4 9
4 5 2 7  4 5 8 4 1 2 9 6 3 7  
5 6 4 1  5 9 6 3 5 4 7 2 1 8  
6 9 3  6 2 4 7 9 5 3 8 6 1  
7 6 4 3  7 6 5 9 4 8 1 3 7 2  
8 8 7 4  8 8 3 1 2 7 6 9 5 4  

                     

Figure 1.6: A sudoku puzzle in the left, and a solution to that puzzle in the

right.

Lemma 1.3.12. For a bracket S, the following expressions are equivalent:

• |Γ(S)| = n.

• ∀ω ∈ Ω there is exactly only one pair (i, j) such that γ(cellij) = ω

and cellij ∈ S.

• There is no pair (i1, j1) 6= (i2, j2) ∈ S such that γ(celli1j1) =

γ(celli2j2)

Proof. The equivalence between the second statement and the third state-

ment is self-evident. We now prove the equivalence between the first and

second statements.

We have |S| = n and |Γ(S)| = n. Since they are of the same size, by the

pigeonhole principle, for all ω ∈ Ω there is exactly only one pair (i, j) such

that γ(cellij) = ω.



1. Introduction 17

Definition 1.3.13. We say that a puzzle (n,F0, γ0) is well defined if

there exists a unique solution for that initial state.

0 1 2 3 4 5 6 7 8

0 4 9 8 2 7 5 1  
1 2 1 8 7 5 4 6 9 3  
2 7 5 1 9 4 8 2  
3 5 3 1 9 4 8 2 7 6
4 8 2 7 3 6 1 9 4 5  
5 6 4 9 2 7 5 1 3 8  
6 1 7 5 4 3 2 8 6 9  
7 3 8 4 6 1 9 5 2 7  
8 9 6 2 5 8 7 3 1 4  

           

Figure 1.7: A not well-defined puzzle with two possible solutions.

Example 1.3.14. We see that the Figure 1.7, with the following puzzle

(n,F0, γ0) is not a well-defined puzzle.



1. Introduction 18

Because both

γ(cellij) =



γ0(cellij) if cellij ∈ F0

3 if (i, j) = (0, 2)

6 if (i, j) = (0, 5)

6 if (i, j) = (2, 2)

3 if (i, j) = (2, 5)

γ′(cellij) =



γ0(cellij) if cellij ∈ F0

6 if (i, j) = (0, 2)

3 if (i, j) = (0, 5)

3 if (i, j) = (2, 2)

6 if (i, j) = (2, 5)

are solutions. A good example of a well-defined puzzle is in Figure 1.6, since

the solution in its right is a unique solution, but proving the uniqueness of

a solution is complicated and will not be done until the end of Chapter 3.



1. Introduction 19

1.4 The mathematics of sudoku

Even though the sudoku puzzle has been judged as not being a mathemat-

ical puzzle due to the fact that the numbers just play the role of symbols

and there is no arithmetic involved, this could not be more wrong.

Mathematics has not been linked to sudoku as much as it should because

there are no arithmetic requirements to solve the puzzle, that much is true.

Nevertheless, a theory based on mathematical logic helps answer many

of the questions related to the puzzle. Below we list some of the most

interesting questions related to sudoku puzzles that were allowed to be

solved through a mathematical approach.

We introduce these facts after the introduction of our sudoku theory, to

show usefulness outside of our algorithm. Our theory will help us under-

stand some of the concepts used to solve these difficult problems and prove

some results.

1.4.1 Minimum number of clues for a sudoku puzzle

One of the most popular math problems related to sudoku is answering the

following question: What is the smallest number of clues that can be given

such that a sudoku puzzle has a unique completion?

In January 2012, in the book Taking sudoku Seriously, The Math Be-

hind the World’s Most Popular Pencil Puzzle Jason Rosenhouse and Laura

Taalman devoted Section 9.4 to this problem and claimed as The Rock Star

Problem, saying: “If you can figure it out, you will be a rock star in the uni-

verse of people who care about such things. Granted, that is a far smaller

universe than the one full of people who care about actual rock stars, but

still, it would be great.”

It is in fact a very complicated problem, even though no one has ever



1. Introduction 20

found a 16 clue sudoku puzzle, which is hardly a proof that it does not exist.

Before answering whether there exists a 16 clue sudoku puzzle, there is an

interesting result that provides a lower bound for the number of sudoku

clues that can create a valid puzzle.

We now prove a theorem that establishes a lower bound of clues for

sudoku puzzles of any size. By allowing us to do this proof, our sudoku

theory shows its potential. This proof can easily be done with simple words,

but we decided to do it with our theory as an introduction to how we are

going to prove the results in the following chapters. The following theorem

allows to switch symbols in a solution if these symbols were not contained

in the puzzle’s initial condition.

Theorem 1.4.1. For a sudoku puzzle (n,F0, γ0), where 2 < n, let γ be a

solution, s1, s2 ∈ Ω \ Γ(F0), s1 6= s2 and

γ∗(cellij) =


γ(cellij) if γ(cellij) /∈ {s1, s2}

s1 if γ(cellij) = s2

s2 if γ(cellij) = s1

then γ∗ is a solution.

Proof. Assume that γ∗ is not a solution for (n,F0, γ0), then by definition

1.3.11 we have two possible cases:

Case 1: γ0 is not a restriction of γ∗.

Then there must exist a cellij such that γ0(cellij) 6= γ∗(cellij).

Case 1.1: γ∗(cellij) /∈ {s1, s2}
Then, by definition of γ∗ we get γ∗(cellij) = γ(cellij),

subsequently γ(cellij) 6= γ0(cellij), which implies

γ not a solution, and a contradiction.

Case 1.2: γ∗(cellij) ∈ {s1, s2}
By definition of γ, we get γ(cellij) ∈ {s1, s2} as well,



1. Introduction 21

but γ0 is a restriction of γ then γ0(cellij) ∈ {s1, s2}, but by hypothesis,

there is no such cell that γ0(cell) ∈ {s1, s2}, since s1, s2 ∈ Ω \ Γ(F0).

However, Γ is the set associated function. So we have a contradiction.

Case 2: There is a bracket S such that |Γ(S)| 6= 9:

Then by Lemma 1.3.12, point three there exist two pairs of indexes

(i1, j1) 6= (i2, j2) ∈ S with γ∗(celli1j1) = γ∗(celli2j2), then by definition

of γ∗ we have γ(celli1j1) = γ(celli2j2) for (i1, j1), (i2, j2) ∈ S,

therefore, we have the contradiction that γ is not a solution.

So by reductio ad absurdum we have that γ∗ is a solution.

Theorem 1.4.2. For a sudoku puzzle (n,F0, γ0), where 2 < n and |F0| ≤
n− 2 then the puzzle is not well defined.

Proof. As the size of F0 is less or equal than n − 2 then there exist two

different numbers: s1, s2 ∈ Ω such that s1, s2 /∈ Γ(F0). Then by Theo-

rem 1.4.1 for every solution γ to the puzzle. There exists γ∗ a different

solution, therefore there is not a unique solution for the puzzle, and the

puzzle is not well defined.

Given the last theorem we now have a lower bound for the number of

clues a sudoku must have to be a well defined puzzle. In particular we can

claim that if a classical sudoku has 7 hints or less then the puzzle is not

well defined. Still with this lower bound there is a big gap between 7, the

lower bound, to 17, the currently biggest lower bound. The bound is 17

because there have been found multiple puzzles with this number of clues

and a unique solution, for instance the Figure 1.8. The proof can be found

in [Che16].



1. Introduction 22

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0 8 1  0 2 3 7 8 4 1 5 6 9  
1 4 3  1 1 8 6 7 9 5 2 4 3  
2 5  2 5 9 4 3 2 6 7 1 8  
3 7 8 3 3 1 5 6 7 4 8 9 2
4 1  4 4 6 9 5 8 2 1 3 7
5 2 3  5 7 2 8 1 3 9 4 5 6  
6 6 7 5  6 6 4 2 9 1 8 3 7 5  
7 3 4  7 8 5 3 4 6 7 9 2 1  
8 2 6  8 9 7 1 2 5 3 6 8 4  

                    

Figure 1.8: A 17 clue puzzle with Γ(F0) = 8 and a unique solution.

Regardless of the previous theorems, the question of the minimum well-

defined sudoku puzzle stands, since we still do not know the minimum

possible number of clues to have a well-defined puzzle.

Here is where Professor Gary McGuire’s work from the School of Math-

ematical Sciences, University College Dublin, becomes relevant. He and

some colleagues did a computer-assisted proof that there is no well-defined

16 clue sudoku puzzle. The proof was done with the help of his checker

algorithm that was able to find more than one solution to every 16 hint

sudoku puzzle [MG13].

1.4.2 Number of sudoku grids

In 2006, Professor Frazer Jarvis addressed the question of the number of

sudoku grids in his paper Mathematics of Sudoku I. As we stated earlier,

sudoku grids are special cases of latin squares, but even for latin squares

the calculation is a difficult problem because no general formula is known.



1. Introduction 23

Jarvis used a brute-force calculation in a clever way to conclude, in a

feasible computing time, that the total number of well defined Sudoku

grids is 6670903752021072936960 ∼ 6.671× 1021.

Then in Mathematics of Sudoku II Frazer reduces that number by iden-

tifying and eliminating (not counting) various symmetries. To understand

these, we introduce the following definitions.

Definition 1.4.3. A stack is a union of
√
n columns, performed in the

following way Stackk =
⋃i=(k+1)∗

√
n−1

i=k
√
n

Ci for all k ∈ {0,
√
n− 1}

Very similarly on the horizontal side,

Definition 1.4.4. A Band is a group of
√
n rows, done in the following

way Bandk =
⋃i=(k+1)∗

√
n−1

i=k
√
n

Ri for all k ∈ {0,
√
n− 1}

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0 7 9 6 8 1 5 4 2 3  0 7 9 6 8 1 5 4 2 3  
1 3 2 8 7 6 4 1 9 5  1 3 2 8 7 6 4 1 9 5  
2 4 1 5 3 9 2 7 8 6  2 4 1 5 3 9 2 7 8 6  
3 1 7 2 6 3 8 5 4 9 3 1 7 2 6 3 8 5 4 9
4 5 8 4 1 2 9 6 3 7  4 5 8 4 1 2 9 6 3 7  
5 9 6 3 5 4 7 2 1 8  5 9 6 3 5 4 7 2 1 8  
6 2 4 7 9 5 3 8 6 1  6 2 4 7 9 5 3 8 6 1  
7 6 5 9 4 8 1 3 7 2  7 6 5 9 4 8 1 3 7 2  
8 8 3 1 2 7 6 9 5 4  8 8 3 1 2 7 6 9 5 4  

                      

Figure 1.9: In the left, a puzzle with the first band highlighted. In the right

a puzzle with the second stack highlighted.

Symmetries can have many different meanings, but in this context, Frazer

specifies six different operations that create a group of all similar grids. The



1. Introduction 24

complete list of operations that Frazer states that can be performed without

leaving the group of similar grids is the following:

• Relabeling symbols (permutations of symbols)

• Permutation of stacks

• Permutation of bands

• Permutation of columns in the same stack

• Permutation of rows in the same stack

• Any reflection or rotation

After applying some techniques of combinatorial mathematics to calcu-

late all the possible symmetries that a grid could have, the number of

possible sudoku grids has been calculated again. The number of different

sudoku grids in different symmetric groups is 5472730538 ∼ 5.47 × 109.

This new number is much smaller than the complete set, which allowed

symmetries.

Our theory has just been proved useful to explain and prove some of the

most interesting mathematical results in the world of sudoku. Now, it is

time to use it to start solving puzzles.



1. Introduction 25

1.5 Solving Algorithms

Before taking off with our algorithm, let us review the most popular solving

algorithms that already exist. In Chapter 4, we will actually compare our

algorithm with some of the examples reviewed here.

First of all, taking advantage of the fact that the most common sudoku

grid is a 9 × 9 grid, there have been many implementations to solve the

puzzle using a backtracking algorithm. Such algorithms use brute force

to solve the problem, taking into account the small size of the grid, a

backtracking algorithm is able to solve most puzzles in a fraction of a

second. However, there are some special cases that make this algorithm

less feasible, which also occurs when n grows larger.

A popular variant of backtracking is Donald Knuth’s Algorithm X. Which

uses a technique known as dancing links. This technique uses recursion and

backtracking through a data structure called a doubly linked list. In fact,

when doing a google search, the first web page that shows up offering a

sudoku solver claims to be using this technique. Dancing links are famous

for their excellent performance results when solving sudoku puzzles [HL14].

One mathematical approach is to treat the problem as a linear program-

ming problem. In this case, there is no objective function to optimize,

but the constraints are taken care of in the feasible region, so the problem

is solved using the famous simplex algorithm. Simplex has been proven

to work just fine when there is a unique solution, which means when the

puzzle is well defined [Van19].

More recently, artificial intelligence approaches have been applied, some

specifically through machine learning. The puzzle was recently tried to

be tackled with convolutional neural networks with a training of a million

puzzles. This approach ended up with an accuracy of 0.86, where accuracy

is defined as the number of sudoku puzzles solved divided by the total



1. Introduction 26

puzzles used to test the algorithm [Par18].

We also consider our algorithm an artificial intelligence approach since we

are emulating human techniques when solving the puzzle. However, when

these techniques are not able to reach a solution we end up backtracking,

so we can also see our algorithm as an enhanced backtracking. We prefer to

label our algorithm as an artificial intelligence algorithm, since backtracking

is really a last resource, and as we will see in the performance section of

Chapter 4, it is barely used.

But before, in the upcoming chapters 2 and 3, we specify and elaborate

the human emulating techniques used in our algorithm, these techniques

can be separated into two groups.

The first group will be the attesting techniques. These techniques are

called attesting because, given a puzzle (n,F0, γ0) with a set of cells with

defined values F0, these techniques will assign values to cells that did not

have one (cells not in F0). The second group, the pruning techniques will be

discussed in Chapter 3. They will help the attesting techniques to “know”

which values should be associated to certain cells.



M 27

Chapter 2

Attesting stages of Solveku



2. Attesting stages of Solveku 28

2.0.1 Fundamentals

This subsection provides the fundamental theory for the code implementa-

tion of the attesting techniques. The following couple of definitions will be

widely used throughout the rest of this chapter.

Definition 2.0.1. We define the neighbors N of a cell, as a subset of G
that contains all the cells that share a bracket with the selected cell:

N(cellij) = (Ri ∪ Cj ∪ Bbof(cellij)) \ {cellij} .

Sometimes we will write Nij instead of N(cellij). Please do not misread

the neighbors N as the set of natural numbers.

In chapter 1 we associated a cell to a value through the value function.

Now, we need a function that links the cells that do not have a value with

a set of possible values it may take (candidates). This set of candidates

will be called the available set of a cell. The link between the cells and

their available sets will be done through an available set function .

Definition 2.0.2. Given a puzzle (n,F0, γ0), we define the available set

function AS as any function that has the following domain and image,

AS: G→ P(Ω). The function is valid if for every solution γ of the puzzle,

we have that γ(cell) ∈ AS(cell) for every cell.

When an algorithm is solving the puzzle it can not use the definition to

verify if an available set function is valid or not, because, of course, it does

not have access to all the solutions of the puzzle. However, if the puzzle

has a cell with an empty set, it becomes clear that for every solution γ we

have that γ(cell) /∈ AS(cell).

Subsequently, we illustrate available sets for the puzzle shown in Fig-

ure 2.1 (left) and its unique solution shown Figure 2.1 (right).



2. Attesting stages of Solveku 29

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0 9 1 5 3  0 9 7 1 8 5 3 6 2 4
1 4 6 7 3  1 4 6 8 2 9 7 3 1 5  
2 1 8  2 3 5 2 4 1 6 7 8 9  
3 7 1 6 3 8 2 4 5 7 9 1 3 6
4 6 4  4 7 3 6 1 8 4 5 9 2  
5 5 1 7 8  5 5 1 9 3 6 2 4 7 8  
6 2 4 5 7 3 9 1  6 2 4 5 7 3 8 9 6 1  
7 9 4 5  7 6 8 3 9 4 1 2 5 7  
8 1 7 6 2 8 4 3  8 1 9 7 6 2 5 8 4 3  

                     

Figure 2.1: Puzzle and its unique solution γ.

Example 2.0.3. Here are two examples of valid available set functions to

the puzzle in Figure 2.1, a trivial one AS1 and a reduced one AS2. Each

cell’s available set is represented with the small numbers inside it. The

cells that are in the domain of the value function have an available set of

one element, which is the value function’s result. It is clear that for every

cell we have that γ(cell) ∈ AS1(cell) and γ(cell) ∈ AS2(cell).



2. Attesting stages of Solveku 30

0 1 2 3 4 5 6 7 8  

0 9
1 2 3

1
1 2 3

5 3
1 2 3 1 2 3 1 2 3  

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6  
7 8 9 7 8 9 7 8 9 7 8 9 7 8 9   

1 4 6
1 2 3 1 2 3 1 2 3

7 3
1 2 3 1 2 3  

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6  
7 8 9 7 8 9 7 8 9 7 8 9 7 8 9  

2
1 2 3 1 2 3 1 2 3 1 2 3

1
1 2 3 1 2 3

8
1 2 3  

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6  
7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9  

3
1 2 3 1 2 3 1 2 3 1 2 3

7
1 2 3

1
1 2 3

6  
4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6  
7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9  

4
1 2 3 1 2 3

6
1 2 3 1 2 3

4
1 2 3 1 2 3 1 2 3  

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6  
7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9  

5 5 1
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

7 8  
4 5 6 4 5 6 4 5 6 4 5 6 4 5 6  
7 8 9 7 8 9 7 8 9 7 8 9 7 8 9  

6 2 4 5 7 3
1 2 3

9
1 2 3

1   
4 5 6 4 5 6  
7 8 9 7 8 9  

7
1 2 3 1 2 3 1 2 3

9 4
1 2 3 1 2 3

5
1 2 3  

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6  
7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9  

8 1
1 2 3

7 6 2
1 2 3

8 4 3  
4 5 6 4 5 6  
7 8 9 7 8 9  

Figure 2.2: The trivial AS1 for the puzzle in the Figure 2.1.



2. Attesting stages of Solveku 31

0 1 2 3 4 5 6 7 8  

0 9
 2 3

1
1 2  

5 3
1 2 3 1 2  1 2   

 5  4  6 4 5 6 4  6 4  6  
7 8   8 9 7 8 9 7  9 7  9   

1 4 6
 2 3 1 2 3  2  

7 3
1 2 3 1 2   

 5  4  6 4  6  5   5   
7 8   8 9  8 9 7 8 9 7 8 9  

2
 2 3  2 3  2 3  2  

1
1 2 3 1 2  

8
 2   

 5 6  5   5 6 4  6 4  6 4 5 6 4 5 6  
7 8  7 8  7 8  7 8 9 7 8 9 7  9 7 8 9  

3
  3 1 2 3  2 3 1 2 3

7
 2 3

1
1 2 3

6  
4   4   4   4 5   5  4 5 6  
7 8 9  8 9 7 8 9  8   8 9   9  

4
  3 1 2 3

6
 2 3 1   

4
1 2 3  2 3 1 2 3  

       5   5 6 4 5 6 4 5 6 4 5   
7 8 9 7 8 9  8 9 7 8 9   9 7  9   9  

5 5 1
 2 3 1 2 3 1  3 1 2 3  2 3

7 8  
4       5 6  5 6 4 5   
7 8 9  8   8 9   9   9  

6 2 4 5 7 3
1  3

9
1 2 3

1   
4  6 4 5 6  
7 8  7 8 9  

7
1  3 1  3 1  3

9 4
1 2 3  2 3

5
 2 3  

  6   6   6  5 6   6 4    
7 8  7 8 9  8   8  7 8  7 8 9  

8 1
 2 3

7 6 2
1   

8 4 3  
  6  5 6  
 8 9 7  9  

Figure 2.3: The slightly reduced AS2 for the puzzle in the Figure 2.1.

Example 2.0.4. Now, Figure 2.4 shows an available set function of the

puzzle in the Figure 2.1 which is not valid. It is not valid because γ is a

solution and γ(cell14) = 9 /∈ AS(cell14) = {2, 4}. Another way to verify

that AS is not valid is a further reduction of the available set. The set

can be reduced by using the fact that a value can not be repeated in the

same column. The presence of 2, 4 in column 4 results in an empty set for

AS(cell14).



2. Attesting stages of Solveku 32

0 1 2 3 4 5 6 7 8  

0 9
 2 3

1
1 2  

5 3
1 2 3 1 2  1 2   

 5  4  6 4 4  6 4  6  
7 8   8 9 7  9   

1 4 6
 2 3 1 2 3  2  

7 3
1 2 2   

 5  4  6 4   5  5   
7 8   8 9  7 8 9 9  

2
 2 3  2 3   2  

1
1 2 3 1 2  

8
 2  

 5 6  5    6  6 4 5 6 4 6  
7 8  7 8  7 8  8 9 9 7  9 7 8 9  

3
  3 1 2 3  2 3 3

7
 2 3

1
1 2 3

6  
4        5  4 5 6  
7 8 9  8 9 7 8 9  8  8 9   9  

4
  3 3

6
 3 1   

4
1  1 2 3  

      5 6 4 4 4   
7 8 9 7 8  7 8 9   9 7  9  9  

5 5 1
 2 3 1 1 2 3  2 3

7 8  
4       5 6 4 5   
7 8 9  8    9   9  

6 2 4 5 7 3
 3

9
2

1   
4  6 4 6  

 8  
7

1  3 1  3 1  3

9 4
1  2 3

5
 2 3  

  6     6    6 4    
7 8  7 8  8   8  7 8  7 8 9  

8 1
 2

7 6 2
1   

8 4 3  
  6  5 6  
 8 9 7  9  

Figure 2.4: Invalid available set function for the puzzle in the Figure 2.1.

When solving a sudoku puzzle (n,F0, γ0) we aim to find a unique solution

γ. However, it is unusual to determine γ directly from γ0. Usually, we start

to assign a value to cells that did not have one, which adds more constraints

to the puzzle and reduces the available set of some cells. Then, these new

constraints help us find new values for other cells and so on and so forth. In

other words, we constantly update γ0. Each time we update γ0, we extend

its domain gradually by iterating through different settings. We formalize

this process, and the with the following definition.

Definition 2.0.5. Given a puzzle (n,F0, γ0), we define (Fk, γk,ASk) as a



2. Attesting stages of Solveku 33

setting , if the following conditions are met:

• F0 ⊆ Fk ⊆ G.

• γk : Fk → Ω.

• ASk is a valid available set function.

Additionally, we define the initial available set function as

AS0(cellij) =

{γ0(cellij)} if cellij ∈ F0,

Ω \ Γ0(Nij) if cellij /∈ F0,

and the initial setting of the puzzle as (F0, γ0,AS0).

In the settings we no longer write the n, number that represents the size

of the grid, nor the grid G itself. We stop writing them because both of

them stay constant for every setting.

Theorem 2.0.6. Given a puzzle (n,F0, γ0), the initial setting (F0, γ0,AS0)

is indeed a setting.

Proof. We have that F0 ⊆ F0, and by Definition 1.3.9 of γ0, we get γ0 : F0 →
Ω, and γ0 � γ0.

Then, what is missing to prove is that AS0 is a valid available set function,

that is, for every solution γ of (n,F0, γ0), and cell ∈ G, γ(cell) ∈ AS0(cell),

if and only if, γ(cell) ∈ Ω \ Γ0(N(cell)). Thus, we have to prove that

γ(cell) /∈ Γ0(N(cell)). Let us recall that cell /∈ N(cell). Assuming γ(cell) ∈
Γ0(N(cell)), we have that there exists cell′ such that cell′ ∈ N(cell)∩F0 and

γ(cell) = γ0(cell′). But γ0 � γ, then γ(cell) = γ(cell′). But cell and cell′

are neighbors, so we have the contradiction γ is not a solution. Therefore,

γ(cell) /∈ Γ0(N(cell)), so (F0, γ0,AS0) is a setting.

The available set and setting definitions will be useful when explaining

the algorithm. The algorithm is made up by techniques we call stages.



2. Attesting stages of Solveku 34

Each stage of the algorithm can be thought as a function. A stage receives

a puzzle setting (Fk, γk,ASk), and returns a new setting (Fk+1, γk+1,ASk+1).

The idea is to apply stages to the puzzle until a solution is found. Next we

explore each stage deeply. After the exploration of all the stages we will

state the complete algorithm. The algorithm is just the order and number

of occurrences of which each stage is applied to the puzzle, concluded by

backtracking if necessary.

The exploration of each stage contains three different parts

• Explanation,

• Sudoku theory,

• Code implementation.

The explanation part gives an insight about the idea that inspired the

technique and how it works. The sudoku theory gives step by step guide

of the stage and a rigorous demonstration without loss of generality, which

proves that the result of a stage ((Fk+1, γk+1,ASk+1)) is actually a setting.

When proving that the result of the stage is a setting, we are proving that

no solutions are lost when applying this technique. The proof will be done

by contradiction in every case, because we believe is the easiest way for

most of the stages, we want to keep a consistency across all the stages.

Finally, we will have an explained Python code implementation, and a

computational complexity analysis. The complete implementation is not

shown, in this section we will just give an insight about the way we decided

to implement the algorithm. However, the implementation shows a way

to find these scenarios where the techniques can be applied and how to

apply them also. Going through the code implementation is not necessary

for the reader to understand the logic of the algorithm, but we consider it

necessary if the reader wants to understand the complexity statements.

All the stages will be explained and described for a generalized n × n



2. Attesting stages of Solveku 35

sudoku grid, using examples of only classical 9× 9 grids.

The stages of the algorithm will be introduced in a specific order. This

order was chosen to follow, what we think, is the order of techniques most

people follow when solving a puzzle. The initial stages emulate the most

basic techniques with very simple logic required, while later stages require

a deeper level of abstraction.

Before going into the stages we show some fundamental code, that is,

code that is a necessary base for understanding the implementation of every

stage. Additionally we use O to calculate computational complexity. In

each stage’s code implementation we will analyze its time complexity using

O.

2.1 Fundamental code

For now, we introduce the three main classes, SudokuCell,

BracketContainer and SudokuGrid with reduced functionality. We will

later extend the functionality of these classes. Basic object oriented pro-

gramming is required to understand this fundamental code. The class Su-

dokuCell starts with the following three attributes:

• value, integer in Ω that represents the result of the value function

applied to that cell in the grid.

• av set, set that represents the available set of the cell.

• fixed, boolean that states if the cell is a hint or not.

Please note that if a cell has a value = 0 it means that the cell is not

in F0. We use 0 because 0 /∈ Ω. The default constructor will assign the

attributes value to 0 and fixed to false. The SudokuCell also contains the

following methods has value(), boolean method that checks if the cell has

an associated value.



2. Attesting stages of Solveku 36

1 c l a s s SudokuCell :

2 n = 9

3 de f i n i t ( s e l f , va lue=0, f i x ed=False ) :

4 s e l f . va lue = value

5 s e l f . f i x ed = f i x ed

6 s e l f . av s e t = None

7 i f not f i x ed :

8 s e l f . av s e t = se t ( )

9

10 de f has va lue ( s e l f ) :

11 return s e l f . va lue != 0

Sudoku Cell class

The SudokuGrid class is initiated with the following attributes:

• n, which is the n that determines the size of the Grid (n× n).

• I and Omega which stand for I and Ω respectively.

• grid, which is a matrix of SudokuCell. This data structure repre-

sents the actual puzzle grid.

Also, SudokuGrid is initiated with the following methods:

• box of() calculates the box of a cell given by row and column.

• The constructor of the class which initiates the attributes and cre-

ates the grid.

The constructor receives a matrix of integers number grid in {0} ∪ Ω,

that represents the puzzle (n,F0, γ0). The entries of the matrix different

from 0, represent the cells in F0.

1 c l a s s SudokuGrid :

2 n = 9

3 I = [ i f o r i in range (n) ]

4 Omega = [ i f o r i in range (1 , n+1) ]

5

6 de f box of ( s e l f , row , c o l ) :

7 re turn 3 ∗ i n t ( row / 3) + in t ( c o l / 3)

8

9

10 de f i n i t ( s e l f , number grid ) :

11 s e l f . g r id = [ [ SudokuCell (num, True ) i f num != 0 e l s e SudokuCell ( ) f o r

num in row ] f o r row in number grid ]

12 f o r row in s e l f . I :

13 f o r c o l in s e l f . I :



2. Attesting stages of Solveku 37

14 c e l l = s e l f . g r id [ row ] [ c o l ]

15 i f not c e l l . has va lue ( ) :

16 f o r va l in s e l f .Omega :

17 c e l l . av s e t . add ( va l )

Sudoku Grid class

For the Bracket container class, we will not be showing the implementa-

tion since it is a bit lengthy, but we will show how use it, and explain the

general idea behind its implementation. BracketContainer class receives a

SudokuGrid and groups the cells and its values by brackets. This is use-

ful because the constraints of the puzzle are based on the bracket. The

BracketContainer class will contain each type of bracket and their image

grouped by type in arrays. We use the word image in a mathematical con-

text, where the image of a function is the set of all output values it may

produce.

For instance, BracketContainer.row[i] represents Ri as an array of

cells, and BracketContainer.rowImage[i] represents Γ(Ri) for i ∈ I as a

set of numbers. For all brackets and images we have them separated by type

(row, col or box) and also grouped together in an attribute called all and

all images of size 3n. We also need the grouped because sometimes we

will need to do operations to all the brackets regardless of their type. The

brackets are stored together in the all attribute in the following order: row,

column, box. And each of them is stored in ascending order. You can take

a look at Figure 2.5 to understand the properties of the BracketContainer

class.

Note that the brackets and their images are not stored twice. The way

this works is that each type of bracket is pointing to a slice of

BracketContainer.all, and each type of image is pointing to a slice of

BracketContainer.all images. For instance, in a classical grid, col[2]

points to the same memory location as all[9+2]. So any changes done to

col[2] will also be reflected in all[9+2].



2. Attesting stages of Solveku 38

Now, assuming we have the implementation of BracketContainer

Now we add one BracketContainer object to the SudokuGrid class con-

structor.

1 c l a s s SudokuGrid :

2 ””” . . . ”””

3 de f i n i t ( s e l f , number grid ) :

4 ””” . . . ”””

5 s e l f . b racket s = BracketContainer ( s e l f )

Bracket added to SudokuGrid

BracketContainer

+ all : SudokuCell [3n]
+ row : SudokuCell [n]
+ col : SudokuCell [n]
+ box : SudokuCell [n]
+ all_image :  Set<int> [3n]
+ row_image : Set<int>[n]
+ col_image : Set<int>[n]
+ box_image : Set<int>[n]

SudokuCell

+ value : int
+ avSet: set
+ fixed : boolean

+ hasValue(): bool

SudokuGrid

+ n : int
+ Grid: SudokuCell [ ] [ ]
+ brackets: BracketContainer

+ constructor(int, matrix)
+ box_of(): void

Figure 2.5: UML diagram of SudokuCell and SudokuGrid.

Finally, we take advantage of the Bracket.row image,

Bracket.col image and Bracket.box image to define the available sets of

all the cells /∈ F0 through a new method: define available sets(). For

a candidate ω we have by Definition 2.0.5 of the initial state of available set

that ω ∈ AS0(cellij) if only if ω /∈ Γ(Nij) if only if ω /∈ Γ(Ri) and ω /∈ Γ(Cj)



2. Attesting stages of Solveku 39

and ω /∈ Γ(Bbof(i,j)). We use this last property to implement the initial

state of the initial available sets in the code.

1 c l a s s SudokuGrid :

2 ””” . . . ”””

3 de f d e f i n e i n i t i a l a v a i l a b l e s e t s ( s e l f ) :

4 f o r row in s e l f . I :

5 f o r c o l in s e l f . I :

6 c e l l = s e l f . g r id [ row ] [ c o l ]

7 i f not c e l l . has va lue ( ) :

8 f o r va l in s e l f .Omega :

9 i f va l in s e l f . b racket s . rowImage [ row ] or va l in s e l f .

b racket s . colImage [ c o l ] or va l in s e l f . b racket s . boxImage [ s e l f . box of ( row , c o l

) ] :

10 c e l l . av s e t . remove ( va l )

11

12 de f i n i t ( s e l f , number grid ) :

13 ””” . . . ”””

14 s e l f . d e f i n e a v a i l a b l e s e t s ( )

Available Set definition

Before going through the techniques, we provide the reader with some

fundamental theory for understanding the time complexity of the algorithm.

We use computational complexity to describe the behavior of the algo-

rithms associated to the techniques of Solveku. Computational complexity

is a simplified way of describing the amount of computing resources (time

and space) that a particular algorithm consumes. In this work, we will only

focus on time complexity, since the space complexity analysis would require

advanced computer science knowledge which lies outside of the scope of this

work.

We will over simplify the notion of time complexity by only providing

the necessary theory required to understand the time complexity explored

in this work. However, there are great resources that explain extensively

the notion of time and space complexity [Pap14]. For measuring the time

complexity of an algorithm we need a way of “counting” operations, we

simplify the definition of operation to assignation and condition checking.

Assuming these operations are equally expensive we just need to add them

up and have a total number of operations.



2. Attesting stages of Solveku 40

Things get interesting when the number of operations of an algorithm

depends on a variable value, in our case, all the stages depend on the value

n, which is the size of the puzzle. Although we just simplified operations,

accurately counting them can be a very difficult task, specially in times

when the problem to solve is not deterministic, sudoku puzzles are not

deterministic since the initial puzzle changes. Therefore, instead of counting

all the operations, the convention is to provide a function that works as an

upper bound and works for every possible case.

Definition 2.1.1. We say that an algorithm depending on n has a big

O complexity of O(h(n)) if there exists a constant C ∈ R such that the

number of operations of the algorithm is smaller than C · h(n) for every

n ∈ N, where h : N→ R. Just for this case N is the set of natural numbers,

and R is the set of real numbers.

Example 2.1.2. Let us calculate the time complexity of the function

complexity example. Assuming getting a random number is inexpensive,

in line 2 we are just doing 3n assignations for every element of the array.

Then, for every element we will be checking if its value is under 0.5 in line

4, these are 3n condition checks, which represent another 3n operations.

Finally, in the worst case, every element will be under 0.5 and we will

assign 0 to every element of the array, which are another 3n operations.

Therefore, we have that the number of operations will be, in the worst case

3n + 3n + 3n = 9n. Let C = 10, and h(n) = n we have that the big O

complexity of complexity example is O(n) since 9n < 10n for every n in

the natural numbers.

1 de f complexity example (n) :

2 ar r = [ random . randint (0 , 1) f o r i in range (3 ∗ n) ]

3 f o r i in range (3 ∗ n) :

4 i f a r r [ i ] < 0 . 5 :

5 ar r [ i ] = 0

Time complexity example.



2. Attesting stages of Solveku 41

In the literature, big O is simplified to just take in count the most signifi-

cant elements in the function, we describe this simplification in the following

addition axiom .

Axiom 2.1.3. For a function h : N→ R such that h(n) = h1(n) + h2(n) +

. . .+ hr(n), for r a finite natural number, and

lim
n→∞

hi(n)

h1(n)
= 0 for i ∈ {2, . . . , r} .

We have that O(h(n)) = O(h1(n)). Note that we chose h1 without loss of

generality since the order in h1(n) + h2(n) + . . .+ hr(n) is unimportant.

This simplification takes place because time complexity is usually calcu-

lated for asymptotic cases. Then, n grows really large and r is fixed, the

contribution of all the hi is negligible.

Example 2.1.4. Let us prove that for h(n) = 7(2n)+n2 +4n we have that

O(h(n)) = O(2n). We define h1(n) = 7(2n), h2(n) = n2 and h3(n) = 4n.

We then have that

lim
n→∞

n2

7(2n)
= 0 and lim

n→∞

4n

7(2n)
= 0 .

By the addition axiom we get O(h(n)) = O(7(2n)). Finally, let C = 8, and

g(n) = 2n we get that h(n) < C · g(n) for every n in the natural numbers.

Then, by definition of big O complexity, we have that O(h(n)) = O(2n).



2. Attesting stages of Solveku 42

2.2 Stage One, Singletons

The first stage of this algorithm consists in singleton elimination. In math-

ematics, a singleton, also known as unit set, which is a set with exactly

one element, a concept widely used in probability theory. Here we will take

advantage of this concept to recognize when a cell should be assigned to a

specific value.

Definition 2.2.1. Given a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0), we

say that the pair cell and value (cell∗, ω) is a singleton when cell∗ /∈
Fk,ASk(cell

∗) = {ω}.

Then next step, of course, will just be assigning ω as the new value

of cell∗, this process is called singleton elimination and will be fully

described in the sudoku theory section.

Example 2.2.2. In Figure 2.6 we show an example of a singleton in a

setting. We have that (cell20, 2) is a singleton. Additionally, we highlighted

the value 2 from available sets of some neighbors once we assign the value

2 to cell20.



2. Attesting stages of Solveku 43

0 1 2 3 4 5 6 7 8

0
  3

1
  3

2 4 7 5 8 6  
       
  9   9  

1 6 8
 2  

1 9 5 3
 2   2   

   4   4    
7          

2
 2  

5 4 8 6 3 1 7 9  
    
     

3
   

3 1 2 6
        

4 5  4 5 4 5  4 5   
7 8 9 7 9 7 8 9       8   

4
1 2  2 1 2

9 5 8 7
  3   3  

4   4 6 6 4   4    
          

5
   

3 6 7 4 2 9 1  
 5  5  
 8  8  

6
 2  1 2   2  

4 3
   

8 1
 2   

 5    6  5 6   6  5   
7  9 7  9 7  9   9 7    

7
 2 3  2   2 3

7 8 1 9
 2 3  2 3  

4 5  4  6  5 6  5 6  5   
                

8
1  3    1  3

5 2
   

4
  3   3  

     6   6   6   6     
7 8 9 7  9 7 8 9   9    7    

Figure 2.6: The cell20 is a singleton.



2. Attesting stages of Solveku 44

0 1 2 3 4 5 6 7 8

0
  3

1
  3

2 4 7 5 8 6  
       
  9   9  

1 6 8
 2  

1 9 5 3
 2   2   

   4   4     
7          

2
 2  

5 4 8 6 3 1 7 9  
    
     

3
   

3 1 2 6
       

4 5  4 5 4 5  4 5    
7 8 9 7 9 7 8 9       8   

4
1 2  2 1 2

9 5 8 7
  3   3  

4   4 6 6 4   4    
           

5
   

3 6 7 4 2 9 1  
 5  5   
 8  8  

6
 2  1 2   2  

4 3
   

8 1
 2   

 5    6  5 6   6  5    
7  9 7  9 7  9   9 7    

7
 2 3  2   2 3

7 8 1 9
 2 3  2 3  

4 5  4  6  5 6  5 6  5    
                

8
1  3    1  3

5 2
   

4
  3   3  

     6   6   6   6      
7 8 9 7  9 7 8 9   9    7    

Figure 2.7: All the neighbors (in red) affected by the singleton cell02.

2.2.1 Sudoku theory

Here we state the formal theory of the just described singleton elimination

process.

Given a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0), we define a function

f1 that receives a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0) and a singleton

(cell∗, ω) and returns a new setting (Fk+1, γk+1,ASk+1).

Since, a setting consists of three different parts, f1 can be split into three

different functions f1
1 , f

2
1 , f

3
1 , such that,

(Fk+1, γk+1,ASk+1) = (f1
1 (Fk, cell∗), f2

1 (Fk, γk, cell∗, ω), f3
1 (ASk, cell

∗, ω))

= f1((Fk, γk,ASk), (cell
∗, ω)).



2. Attesting stages of Solveku 45

Given a singleton cell∗, we define:

Fk+1 = f1
1 (Fk, cell∗) = Fk ∪ {cell∗} ,

for every cell ∈ G :

γk+1(cell) = f2
1 (Fk, γk, cell∗, ω)

∣∣
cell

=

γk(cell) if cell ∈ Fk

ω if cell = cell∗

ASk+1(cell) = f3
1 (ASk, cell

∗, ω)
∣∣
cell

=

ASk(cell) if cell /∈ N(cell∗)

ASk(cell) \ {ω} if cell ∈ N(cell∗)

The following theorem states that the definition of f1 above preserves all

solutions by proving that the result of f1 is indeed a setting.

Theorem 2.2.3. Given a setting (Fk, γk,ASk) of puzzle (n,F0, γ0) and a

singleton (cell∗, ω), f1((Fk, γk,ASk), (cell
∗, ω)) = (Fk+1, γk+1,ASk+1) is a

setting.

Proof. By definition of f1
1 and f2

1 , it is clear that Fk ⊆ Fk+1 and γk � γk+1.

Now we only have left to prove that ASk is a valid available set function. We

aim to prove this by contradiction. Hence, ASk+1 is not a valid available set

function, then, there must exist a solution γ and cell′, such that γ(cell′) /∈
ASk+1(cell′). We distinguish two different cases.

Case 1, cell′ /∈ N(cell∗):

Then, by definition of ASk+1 by f3
1 , we have ASk+1(cell′) = ASk(cell

′).

Therefore, we conclude γ(cell′) /∈ ASk(cell
′), but this contradicts

that ASk is a valid available set function.

Case 2, cell′ ∈ N(cell∗):

Then, as ASk is a valid available set function we get γ(cell′) ∈
ASk(cell

′), so by definition of f3
1 we have γ(cell′) ∈ ASk(cell

′) \



2. Attesting stages of Solveku 46

ASk+1(cell′) = {ω} and γ(cell′) = ω. Nevertheless, as γ is a

solution and cell∗ is a singleton, γ(cell∗) = ω. Then, we get

γ(cell∗) = γ(cell′), which contradicts that γ is a solution, because

cell′ and cell∗ are neighbors.

By reducto ad absurdum, ASk+1 is a valid available set function, and

therefore, (Fk+1, γk+1,ASk+1) is a setting.

2.2.2 Implementation

First, we create two new methods in the SudokuGrid class:

update neighbors available set and update cell which will be used for

assigning a value to a cell and handling all the corresponding aftermath.

The update cell function is called when a cell becomes valued with ω, it

sets the value attribute of the cell to ω, and adds ω to the images of the cor-

responding brackets. Then, the function update neighbors available set

removes ω from the available sets of all the neighbors that do not have an as-

sociated value. Note that update neighbors available set is triggered

by update cell. In fact, these two functions will be useful through the

whole algorithm, whenever we discover the value of a cell.

1 c l a s s SudokuGrid :

2 ””” . . . ”””

3

4 de f upda t e n e i ghbo r s ava i l a b l e s e t ( s e l f , row , col , num) :

5 f o r i t in s e l f . I :

6 s e l f . b racket s . row [ row ] [ i t ] . av set remove (num)

7 s e l f . b racket s . c o l [ c o l ] [ i t ] . av set remove (num)

8 s e l f . b racket s . box [ s e l f . box of ( row , co l ) ] [ i t ] . av set remove (num)

9

10 de f upda t e c e l l ( s e l f , row , col , num) :

11 s e l f . g r id [ row ] [ c o l ] . va lue = num

12 s e l f . g r id [ row ] [ c o l ] . av s e t = None

13 i f num in s e l f . b racket s . rowImage [ row ] or num in s e l f . b racket s . colImage [

c o l ] or num in s e l f . b racket s . boxImage [

14 s e l f . box of ( row , co l ) ] :

15 r a i s e Exception ( ”Group con s t r a i n t v i o l a t ed ” )

16 s e l f . b racket s . rowImage [ row ] . add (num)

17 s e l f . b racket s . colImage [ c o l ] . add (num)

18 s e l f . b racket s . boxImage [ s e l f . box of ( row , co l ) ] . add (num)

19 s e l f . u pda t e n e i ghbo r s ava i l a b l e s e t ( row , col , num)



2. Attesting stages of Solveku 47

Cell update

Now, we execute stage 1, we iterate through every cell in the Grid, and

use update cell whenever we find a singleton. Here, ω is the only number

in the cell’s available set.

1 c l a s s SudokuGrid :

2 ””” . . . ”””

3 de f s tage one ( s e l f ) :

4 f o r row in s e l f . I :

5 f o r c o l in s e l f . I :

6 c e l l = s e l f . g r id [ row ] [ c o l ]

7 i f not c e l l . has va lue ( ) and l en ( c e l l . av s e t ) == 1 :

8 f o r num in c e l l . av s e t :

9 s e l f . upda t e c e l l ( row , col , num)

Stage 1

An important thing to notice is that as the algorithm keeps moving

through the grid, some cells might be new singletons. These new singletons

were created because the algorithm affects the available set of some cells.

This is illustrated in Figure 2.8. There is no logic difference between the

implementation and the theoretical method. As cell10 is a singleton, when

updating its neighbors, cell22 gets updated and becomes a singleton. Now,

as (1,0) is checked before (2,2), cell22 is treated as a singleton in the same

iteration. However, if the rows 1 and 2 were exchanged in the same puzzle,

then the singleton cell20 would cause a singleton in cell12 and this new

singleton would have to be treated in the next iteration.



2. Attesting stages of Solveku 48

0 1 2 3 4 5 6 7 8  

0
  3

1
  3

2 4 7 5 8 6  
       
  9   9  

1
 2  

5 4 8 6 3 1 7 9   
    
      

2 6 8
 2  

1 9 5 3
 2   2   

   4   4    
7          

3
   

3 1 2 6
       

4 5  4 5 4 5  4 5   
7 8 9 7 9 7 8 9       8    

4
1 2  2 1 2

9 5 8 7
  3   3  

4   4 6 6 4   4    
           

5
   

3 6 7 4 2 9 1  
 5  5  
 8  8   

6
 2  1 2   2  

4 3
   

8 1
 2   

 5    6  5 6   6  5    
7  9 7  9 7  9   9 7    

7
 2 3  2   2 3

7 8 1 9
 2 3  2 3   

4 5  4  6  5 6  5 6  5   
                 

8
1  3    1  3

5 2
   

4
  3   3  

     6   6   6   6       
7 8 9 7  9 7 8 9   9    7    

Figure 2.8: Example of two singletons in same iteration.

2.2.3 Complexity

Since the grid has n2 cells, we first have O(n2) as we are iterating through

the whole grid. However, every time we find a singleton we update.

Once we have found a cell that is a singleton we assign to it the only

value in its available set and change the available sets of the neighbors.

The complexity for changing the available sets of the neighbors of the cell

cell is O(3n) because it goes through a whole row, column and box. Then,

the whole stage complexity is O(n2)O(3n) = O(n2 · 3n) = O(n3).



2. Attesting stages of Solveku 49

2.3 Stage Two, Hermit

The objective of this stage is to assign a value to a cell when it is the only

one in a bracket that has a specific candidate. The technique is directly

related with the definition of the solution, Definition 1.3.11, page 15. For

a puzzle (n,F0, γ0), and a solution γ, for every bracket S, we have that

|Γ(S)| = n. Thus, all the brackets should contain every number in Ω. That

is, for every bracket S and value ω ∈ Ω, there should exist a cell ∈ S such

that γ(cell) = ω. This statement motivates the following definition.

Definition 2.3.1. For a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0), a

bracket S, and a candidate ω ∈ Ω, we say that a (S, cell∗, ω) is a her-

mit , if cell∗ is the only cell in S such that ω ∈ ASkcell
∗.

A hermit is only useful when 2 ≤ |AS(cell∗)|, otherwise it is a simple

singleton. When a hermit (S, cell∗, ω) is found, all the remaining values

should be deleted from AS(cell∗), leaving AS(cell∗) = {ω}. Then, since

ω will be the value of cell∗, ω can be removed from all the neighbors’

available sets, except the ones in S. The neighbors in S can be ignored

to avoid redundancy, since they are the ones that caused the hermit, so

they cannot have ω in their available set. We call this process hermit

elimination .

Example 2.3.2. For the setting in Figure 2.9 we have that (B0, cell01, 6)

is a hermit because cell01 is the only cell in B0 that has a 6 in its available

set. Therefore, 6 will become the value of cell01, and 6 can be eliminated

from all the neighbors of cell01 that are not in the box B0.



2. Attesting stages of Solveku 50

0 1 2 3 4 5 6 7 8

0 7
3 3 3

8
2 3

1
3

95 6 5 4 4 6

1 8 4
1 3 3 1 3 1 3 3 3

25 5 6 6
9 7 9 7 9 7 7 7

2
1 3 1 3

2 5
1 3

6
3 3 3

4
9 7 9 7 8 7 8 7 8

3
1 3

2
1 3 3 3 3 3 1 3 3

5 5 4 6 5 6 4 6 6
8 9 7 8 7 7 8 7 8 9 7 8 9 7 8

4 4
3

6 1
3

9 2
3

57 8 7 7 8

5
1 3 1 3 1 3 3 2 3 2 3 3

4
3

5 5 5 6 5 6 6
7 8 9 8 9 7 8 7 7 8 7 8 9 7 8

6
1 3 1 3 1 3

2
1 3

5 4
3 3

6 6 6
8 8 7 9 7 8 9 7 8

7
2 3 3 3 3 3 3 3

5 16 6 4 6 6
8 8 7 8 9 7 9 7 8 7 8 9

8 9
1 3

7
3

4
1 3 3 2 3

65
8 8 8 8 8

Figure 2.9: Hermit example cell01.

A cell can be a hermit with two different brackets and the same value

and that is not a problem. Let us assume cell∗ is a hermit on (ω,S1) and

on (ω,S2). Then the only consequence will be that less cells will have ω

removed from their available sets since they did not have it in the first

place. It is impossible for a cell to be a hermit with two different values

ω1, ω2. This property will be proven in the formal theory subsection.

Example 2.3.3. Figure 2.10 shows that cell34 is a hermit on (5,R3) and



2. Attesting stages of Solveku 51

a hermit on (5,B4). Therefore, the only cells that can be affected are in

N(cell34) \ (R3 ∪ B4) = {cell04, cell24, cell74, cell85} ⊆ C4. In this case, the

only affected cells are cell74, cell84.

0 1 2 3 4 5 6 7 8

0
3 1 3 1 3 3 1 3 1 1

2  
4 5 4 5 4 4 4 6 4 6 5  
7 9 8 7 7 7 8 7 8 9  

1
2 3 1 2 3 1 2 2 3

9 5 4
1 3  

6  
7 7 8 7 7 8 7  

2
2 3 1 2 3

6 8
3 1 2 3 1 1 3  

4 5 4 5 4 4 5 5  
7 9 7 7 7 7 9 7 9  

3
2 2 2

1 9 7 3 8  
4 6 4 6 4 4 5  

 
4

3

8 5
3

2
3

9 4 1  
6  

7 7 7  
5 1

3 3 3 3

2 5 6  
4 4 4 4  

7 9 7 7 8 7 8  
6 8 9 3

2

1
2 2  

4 5 4 5 6 6 5  
7 7 7 7  

7
2 1 2 1 2

9
3 2 3 1 1 2

4  
5 6 5 6 5 5  

7 8 7 8 8 7 8  
8

2 1 2

7 6
2

3
1 2  

4 5 4 5 5 5  
8 8 8 9 9  

Figure 2.10: Hermit example cell34.

The stage two of the algorithm consists in recognizing all the hermits

in the grid. We iterate throughout every bracket, and for each candidate

ω we count in how many cells’ available sets it is contained. If we find a

candidate ω that is contained only by cell∗ ∈ S on the whole bracket S,



2. Attesting stages of Solveku 52

then (S, cell∗, ω) is a hermit and we do a hermit elimination.

2.3.1 Sudoku theory

In this section we state here the formal theory of the candidate elimination

process that is triggered when a hermit is found.

Now, just like in stage 1, we define a function f2 that will receive a setting

(Fk, γk,ASk) of a puzzle (n,F0, γ0) and a hermit (S, cell∗, ω), and will return

another setting.

Accordingly, we define,

(Fk+1, γk+1,ASk+1) = f2((Fk, γk,ASk), (S, cell∗, ω))

= (f1
2 (Fk, cell∗), f2

2 (Fk, γk, cell∗, ω), f3
2 (ASk, cell

∗, (ω,S)) ,

where

Fk+1 = f1
2 (Fk, cell∗) = Fk ∪ {cell∗} ,

and for every cell ∈ G :

γk+1(cell) = f2
2 (Fk, γk, cell∗, ω)

∣∣
cell

=

γk(cell) if cell ∈ Fk

ω if cell = cell∗

ASk+1(cell) = f3
2 (ASk, (S, cell∗, ω))

∣∣
cell

=



{ω} if cell = cell∗

ASk(cell) if cell ∈ G \ (N(cell∗) ∪ {cell∗})

ASk(cell) if cell ∈ S \ {cell∗}

ASk(cell) \ {ω} if cell ∈ N(cell) \ S

Now we prove that (Fk+1, γk+1,ASk+1) is indeed a setting, which means,



2. Attesting stages of Solveku 53

no solutions are lost during the hermit elimination.

Theorem 2.3.4. Given a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0), and

a hermit (S, cell∗, ω), f2((Fk, γk,ASk), (S, cell∗, ω)) = (Fk+1, γk+1,ASk+1) is

a setting.

Proof. It is clear that Fk ⊆ Fk+1 and that γk � γk+1. Then it remains to

prove that ASk+1 is a valid available set function. We have to prove that

for every cell ∈ G, and for every solution γ of (n,F0, γ0), we have that

γ(cell) ∈ ASk+1(cell).

Let us suppose it is not, then, there must exist a solution γ and cell′ ∈ G,

such that γ(cell′) /∈ ASk+1(cell′). Since ASk is a valid available set function,

we have that for every cell ∈ G, γ(cell) ∈ ASk(cell), so in particular, we

have the following property for cell′

γ(cell′) ∈ ASk(cell
′) \ASk+1(cell′) (2.1)

Case 1, cell′ = cell∗:

We have that ASk+1(cell∗) = {ω}. Then, by (2.1) γ(cell′) 6= ω,

which means γ(cell∗) 6= ω. Then, as cell∗ ∈ S and γ(cell∗) 6= ω,

there exists another cellω ∈ S such that γ(cellω) = ω. But, since

(S, cell∗, ω) is a hermit, we have that ω /∈ ASk(cell) for each cell ∈ S
except cell∗. Which means that ω = γ(cellω) /∈ ASk(cellω). This

contradicts the hypothesis that ASk is a valid available set function.

Case 2, cell′ ∈ G \ (N(cell∗)) ∪ {cell∗}) or cell′ ∈ S \ {cell∗}:
By definition of ASk+1, ASk+1(cell′) = ASk(cell

′), then by (2.1) we

have that γ(cell′) ∈ ∅, which is not possible.

Case 3, cell′ ∈ N(cell∗) \ S:

By (2.1) we have that γ(cell′) ∈ ASk \ (ASk \ ω)), which means

γ(cell′) = ω. Now, since (S, cell∗, ω) is a hermit, γ(cell∗) = ω.



2. Attesting stages of Solveku 54

Then, γ(cell∗) = γ(cell′), which is a contradiction because cell′

and cell∗ are neighbors.

By reducto ad absurdum ASk+1 is a valid aset function and

(Fk+1, γk+1,ASk+1) is a setting.

It is now clear that a cell cannot be a hermit with two different values

ω1, ω2. This is impossible because of Case 1 in the proof, since it would

imply that every solution satisfies γ(cell) = ω1 and γ(cell) = ω2 which is a

contradiction because γ is a function.

2.3.2 Implementation

Since we want check for hermits in every bracket regardless of its type, we

take advantage of the all attribute in BracketContainer.

Then, given a bracket index and the cell’s inside that bracket, we need

a way to identify the cell’s position in the grid. These are just arithmetic

functions, whose implementation is unrelated to the algorithm. Therefore,

we are going to assume that we have them, get row and get col which

give the row and column of a cell based on the index of its bracket, and its

index inside that bracket.

Now, we add the method that executes stage two on the SudokuGrid

class.

For every bracket and every cell we check every candidate in its avail-

able set. For each of those candidates we add it to a dictionary called

candidate map that maps the candidate to the index of the cell where it

was found. Then, if a candidate is found more than once we change its

index to −1, since it cannot be a hermit, we use −1 because it is not a

valid index for a cell.

By definition, after checking all the cells of a bracket, all the candidates



2. Attesting stages of Solveku 55

that appear in the map with a positive index are hermits, since they were

found only once in a bracket. Subsequently, we do the hermit elimination

process, using the update cell function implemented in stage 1.

1 c l a s s SudokuGrid :

2 de f s tage two ( s e l f ) :

3 f o r bracket index in range ( l en ( s e l f . b racket s . a l l ) ) :

4 bracket = s e l f . b racket s . a l l [ b racket index ]

5 candidate map = {}
6 f o r c e l l i n d e x in SudokuGrid . I :

7 c e l l = bracket [ c e l l i n d e x ]

8 i f not c e l l . has va lue ( ) :

9 f o r candidate in c e l l . av s e t :

10 i f candidate in candidate map :

11 candidate map [ candidate ] = −1

12 e l s e :

13 candidate map [ candidate ] = c e l l i n d e x

14 f o r candidate , c e l l i n d e x in candidate map . items ( ) :

15 i f 0 <= c e l l i n d e x :

16 row = s e l f . b racket s . get row ( bracket index , c e l l i n d e x )

17 co l = s e l f . b racket s . g e t c o l ( bracket index , c e l l i n d e x )

18 s e l f . upda t e c e l l ( row , col , candidate )

Stage 2

The inner loop in line 9, in the worst case goes through every candidate

(O(|Ω|) = O(n)) of every cell (O(n)) of every bracket (O(3n)). This results

in a time complexity of O(3n · n · n) = O(3n3) = O(n3).

Moreover, line 17 is inside two loops, for each bracket (O(3n)), and for each

candidate ((O(|Ω|) = O(n)). Then, the line itself calls the update cell()

which has a complexity of (O(3n)) because it goes through every neighbor

of the cell. For this process, we have a time complexity of O(3n · n · 3n) =

O(9n3) = O(n3).

Finally, the total time complexity of the stage is O(n3) +O(n3) = O(n3).

Stage 1 and stage 2 are the only stages that assign values to cells in the

grid. The next stages will only reduce the available set of some cells but

will never assign a value to a cell. However as available sets are reduced

by the next stages, there is a chance to produce new singletons or hermits

which will cause a return to stages one and two.



M 56

Chapter 3

Pruning sections of Solveku

In this chapter we will go through three more stages. These stages use

more complicated techniques which implies that the theory and the imple-

mentation will be less straightforward. Because of this, the code section

for stage four and five will need some additional theory from the sudoku

theory section.

The main difference between the three techniques in this chapter and the

previous ones is that these are just pruning stages. By pruning we mean

that the stages’ goal is just to reduce the available sets of some cells, they

are not going to fix values in cells, like stages 1 and 2 did.



3. Pruning sections of Solveku 57

3.1 Stage Three, Bracket Intersection

Stage 3 consists in the pruning of available sets of cells in a specific bracket.

This stage differs from the two previous stages because is focused on brack-

ets while Stage 1 and 2 are focused on cells or the relationship between an

specific cell and a bracket. The pruning happens when two brackets (root

Sr and target St) and a candidate ω hold the following condition. All the

cells in the root, that have ω in their available set, belong to the intersection

between the root and the target, that is Sr ∩St. This intersection gives the

name to the technique bracket intersection . We show state an example

to illustrate this scenario.

Example 3.1.1. In the setting (Fk, γk,ASk) of Figure 3.1 we can see that

all the cells in the column C1 that have the candidate 6 in their available

set are inside the box B3 as well. Therefore, C1 is the root and B3 is the

target. So we can prune 6 from the available set of all the cells ∈ B3 \ C1,

in this case, the cells that are pruned are cell32, cell42, cell52. We are able

to prune these cells because if one of those cells took the value 6, then there

would be no cell in C1 with 6 in its available set.



3. Pruning sections of Solveku 58

0 1 2 3 4 5 6 7 8

0 2 9 4 3 7 1 5  
6 6  

8 8  
1 9

1 3

4
1 1 2 1

6
2 3 2  

5 5  
7 8 7 7 8  

2 7 5
1 3 1 1 2 1 3

4
2  

6 6 6  
8 8 9 8 9  

3 5
1 3 1 3

4 8
1 1 2 2  

6 6 6 6   
7 7 9 7 9 9 7 9 7 9  

4 2
1 1 1 1 1

4 5 3  
6 6 6 6 6  

7 8 7 8 9 7 7 9 7 9  
5 4

1 1

3 5 2
1  

6 6 6  
7 7 9 8 9 7 9 7 8 9  

6
3

4 2
3 3

8 1  
6 5 6 6 5 6  

7 7 9 7 9 9  
7

1 3 3

5
1 1 3

4 2 6  
 

8 7 8 7 7 9 7 9  
8

1 3

9
3

2
1 3

8 5
3

4  
6 6 6  

7 7 7  
 

Figure 3.1: Bracket intersection example for C1 and B3

Example 3.1.1 shows a column intersection, which is one of the four

different possible types of bracket intersections. First, we define each type

of bracket intersection separately, so that the concept can be extensively

explained.

Definition 3.1.2. For a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0).

A box-r intersection (Bi1 ,Ri2 , ω) happens when all the cells in the box

Bi1 that contain ω in their available set are in the row Ri2 , for i1, i2 ∈ I.

A box-c intersection (Bi1 ,Ci2 , ω) happens when all the cells in Bi1 that

contain ω in their available set are in the column Ci2 , for i1, i2 ∈ I.

We say that the box Bi1 is the root and the row Ri2 or the column Ci2



3. Pruning sections of Solveku 59

are the target respectively, and the intersection value is ω.

Example 3.1.3. In Figure 3.2 we show a box-r intersection, where B8 is

the root, and R6 is the target with value 4.

0 1 2 3 4 5 6 7 8

0 3 2 6 1  
4 4 5 4 5  

7 8 9 7 8 7 8 8 9 7 8  
1 4 1

2 3 3 2 3 2 3 2 3 2 3  
5 6 5 5 6 5 6  
8 9 7 8 7 8 7 7 9 8 9 7 8 9  

2 9
3

1
2 3 2 3 2 3  

6 5 6 4 5 4 5 6 4 5 6  
7 8 7 8 8 7 8 7 8 7 8 9  

3 5
2 1 1

9
3 2 3 2 3

4  
6 6  

7 8 8 7 8  
4

2

6
3 3 3 2 3

7 1  
4 4 4 5 4 5  

8 9 8 9 8 8 9  
5 3

1 1

2 5  
4 4 6 4 6  
7 8 9 8 9 7 9 8 9  

6
1 2 2 1 3

5
1 3

8
2 3 2 3 2 3  

6 4 4 6 4 6 4 4  
9 9 9 7 7 7  

7
2 2 3 2 3 3 2 3

5 1 9  
6 4 4 6 4 4 6 4  

8 8 8 7 7 7  
8

1 2

5 7
2 3 1 3

9 8 6
2 3  

4 4  
  

Figure 3.2: Row prune.

Now we define the two remaining types of bracket intersection.

Definition 3.1.4. Given a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0), a

row intersection on (Ri1 ,Bi2 , ω) , when all the cells in the row Ri1 that

contain ω in their available set are in the box Bi2 , for i1, i2 ∈ I.

A column intersection on (Ci1 ,Bi2 , ω) , when all the cells in the column

Ci1 that contain ω in their available set are in the box Bi2 , for i1, i2 ∈ I.



3. Pruning sections of Solveku 60

Example 3.1.5. In Figure 3.3, shows the setting presented in Example

3.1.1. We have a column intersection, where C1 is the root, and B3 is a

target with value 6.

0 1 2 3 4 5 6 7 8

0 2 9 4 3 7 1 5  
6 6  

8 8  
1 9

1 3

4
1 1 2 1

6
2 3 2  

5 5  
7 8 7 7 8  

2 7 5
1 3 1 1 2 1 3

4
2  

6 6 6  
8 8 9 8 9  

3 5
1 3 1 3

4 8
1 1 2 2  

6 6 6 6   
7 7 9 7 9 9 7 9 7 9  

4 2
1 1 1 1 1

4 5 3  
6 6 6 6 6  

7 8 7 8 9 7 7 9 7 9  
5 4

1 1

3 5 2
1  

6 6 6  
7 7 9 8 9 7 9 7 8 9  

6
3

4 2
3 3

8 1  
6 5 6 6 5 6  

7 7 9 7 9 9  
7

1 3 3

5
1 1 3

4 2 6  
 

8 7 8 7 7 9 7 9  
8

1 3

9
3

2
1 3

8 5
3

4  
6 6 6  

7 7 7  
 

Figure 3.3: Box prune.

We stated that there are four types of bracket intersections, but we did

not explain why there are not more. There exist three different types of

brackets, which means there are 32 = 9 different types of combinations of

source and target. First of all, two different brackets of the same type can

never intersect, so we are left with 6 possible combinations. Now, do not

consider the intersection between row and column because the intersection

is only one cell, which would be a hermit if we ask that this cell is the only



3. Pruning sections of Solveku 61

one in the source whose available set contains ω. Therefore, we ignore this

case because it is already covered by stage 2.

The four types of intersection presented earlier can be grouped into one.

We defined them separately for didactic purposes. However, we are now

going to group them together into one definition, so that we can then

generalize the bracket pruning. This generalization will also include the

intersections between rows and columns, however, in the implementation

of the algorithm we look exclusively for the four types of intersection de-

fined earlier to avoid redundant computations. This general definition will

be very useful for the sudoku theory since it will allow to generalize the

theorems as well.

Definition 3.1.6. For a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0), we say

that (Sr,St, ω) is a bracket intersection if for all cell ∈ Sr we have that

if ω ∈ ASk(cell) then cell ∈ St. We call Sr root, St target, ω intersection

value.

Additionally, the elimination of ω from AS(cell), for cell ∈ St such that

cell /∈ Sr will be called bracket difference prune .

Example 3.1.7. For the setting in Figure 3.4, we show a bracket difference

prune for the bracket intersection (Sr = B8,St = R6, 4). The target is R6

with 4 as an intersection value, then 4 will be removed from the available

sets of cell61, cell62, cell64.



3. Pruning sections of Solveku 62

0 1 2 3 4 5 6 7 8

0 3 2 6 1  
4 4 5 4 5  

7 8 9 7 8 7 8 8 9 7 8  
1 4 1

2 3 3 2 3 2 3 2 3 2 3  
5 6 5 5 6 5 6  
8 9 7 8 7 8 7 7 9 8 9 7 8 9  

2 9
3

1
2 3 2 3 2 3  

6 5 6 4 5 4 5 6 4 5 6  
7 8 7 8 8 7 8 7 8 7 8 9  

3 5
2 1 1

9
3 2 3 2 3

4  
6 6  

7 8 8 7 8  
4

2

6
3 3 3 2 3

7 1  
4 4 4 5 4 5  

8 9 8 9 8 8 9  
5 3

1 1

2 5  
4 4 6 4 6  
7 8 9 8 9 7 9 8 9  

6
1 2 2 1 3

5
1 3

8
2 3 2 3 2 3  

6 4 4 6 4 6 4 4  
9 9 9 7 7 7  

7
2 2 3 2 3 3 2 3

5 1 9  
6 4 4 6 4 4 6 4  

8 8 8 7 7 7  
8

1 2

5 7
2 3 1 3

9 8 6
2 3  

4 4  
  

Figure 3.4: Bracket prune for R6.

We now formalize this pruning process with the sudoku theory.

3.1.1 Sudoku Theory

Given a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0), and a bracket inter-

section (Sr,St, ω), we are going to show that applying a bracket difference

prune does not loose solutions.

Let f3, be the function that receives a setting and an intersection and

produces another setting with a bracket prune. Since the function f3 does



3. Pruning sections of Solveku 63

not assign values to cells, it preserves (Fk, γk). We define,

(Fk+1, γk+1,ASk+1) = f3((Fk, γk,ASk), (Sr,St, ω))

= (Fk, γk, f3
3 (ASk, (Sr,St, ω))) ,

where, for every cell ∈ G:

ASk+1(cell) = f3
3 ((Fk, γk,ASk), (Sr,St, ω))

∣∣
cell

=


ASk if cell ∈ G \ St

ASk if cell ∈ St ∩ Sr

ASk \ {ω} if cell ∈ St \ Sr

Now, the following theorem ensures no solutions are lost when doing a

bracket intersection prune, this is achieved by proving the result of applying

f3 to a setting is still a setting.

Theorem 3.1.8. Given a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0), and

an intersection (Sr,St, ω), the tuple

f3((Fk, γk,ASk), (Sr, St, ω)) = (Fk+1, γk+1,ASk+1)

is a setting.

Proof. By definition of f3 we have that Fk+1 = Fk, so Fk ⊆ Fk+1 and

γk+1 = γk, then γk � γk+1. Therefore, the only thing left to prove is that

ASk+1 is a valid available set function.

Let us suppose it is not, then there must be a solution γ, and a cell′ ∈ G
such that γ(cell′) /∈ ASk+1(cell′). Hence, we get the following property:

γ(cell′) ∈ ASk(cell
′) \ASk+1(cell′) . (3.1)

Case 1, cell′ ∈ G \ St or cell′ ∈ St ∩ Sr:
Then by definition of f3

3 we have that ASk+1(cell′) = ASk(cell
′).



3. Pruning sections of Solveku 64

Therefore, by (3.1), we have that γ(cell′) ∈ ∅ which is a contradic-

tion.

Case 2, cell′ ∈ St \ Sr:
By (3.1) and by definition of f3

3 , we have γ(cell′) ∈ {ω}, subse-

quently γ(cell′) = ω.

Since ω ∈ Ω and γ is a solution by Definition 1.3.11, page 15 we

have that in every bracket and for each value in Ω there should

be a unique cell in the bracket with that value. Then, let cellr be

the cell in the root Sr such that γ(cellr) = ω. This implies that

ω ∈ ASk(cellr) because ASk is valid.

Given that (Sr,St, ω) is an intersection, by Definition 3.1.6 we

have cellr must also belong to the target, that is, cellr ∈ St. But

γ(cellr) = ω and γ(cell′) = ω. Then, we have two different cells

with the same value in the same bracket St, which is a contradic-

tion. We are certain they are different cells because cellr ∈ St ∩ Sr
and cell′ ∈ St \ Sr.

Finally by reducto ad absurdum we have that ASk+1 is a valid available set

function and then (Fk+1, γk+1,ASk+1) is a setting.

3.1.2 Implementation

We first need a method that finds intersections in the grid. We aim to

construct a method that works for all four types of intersections, since we

do not want to repeat code. For that, we need another function that, given

the bracket type of the root and the bracket type of the target, is able to

separate cells by the potential target bracket they belong to. This function

is going to separate potential targets by indexes, these indexes will go from

1 to
√
n since for every intersection (four types presented earlier) each

source has
√
n potential target brackets for a specific target type. Because



3. Pruning sections of Solveku 65

each row and column intersect with
√
n different boxes, and likewise, each

box intersects with
√
n different rows and

√
n different columns. The logic

of this function is independent from Solveku, so we are going to assume we

have it, and the function is called split function.

In other words, the split function will receive the type of source (row,

column or box), the type of the target, and an internal index. The internal

index represent the index of a cell inside the source bracket, that is, the

index of the array representation of a bracket. Finally split function

returns the target index, which is a natural number in {0, . . . ,
√
n− 1}

Will only have two types of split functions, one that splits the internal

indexes by module ψm (base
√
n), and one that splits by division ψd, which

uses arithmetical division and takes the floor of the result

Example 3.1.9. We now illustrate both types of split functions with two

different examples. For any puzzle (n,F0, γ0). First, let ψd be the split

function, that separates by division where C3 is the root, and the target

type is box. Since C3 is the root, its array representation is

[cell03, cell13, cell23, cell33, cell43, cell53, cell63, cell73, cell83]

The order of this array representation is crucial, because it gives us the

internal index of these cells. For an internal index i ∈ I, the division split

function looks as follows: For cell ∈ C3

ψd(i) =

⌊
i√
n

⌋
Notice that if we separate the array representation of C3 by the result of

applying ψd to their internal index, we end up with the following sub arrays:

(ψd(i) = 0) [cell03, cell13, cell23] ⊆ B1,

(ψd(i) = 1) [cell33, cell43, cell53] ⊆ B4,

(ψd(i) = 2) [cell63, cell73, cell83] ⊆ B7.



3. Pruning sections of Solveku 66

Notice that the cells are separated by the box they belong to, which is

exactly the result we were expecting.

Now, let us also give an example of the split by module function. B8

is the root, and the target type is column. Recall from the definition of

BracketContainer, page 37, that the array representation of B8 looks as

follows:

[cell66, cell67, cell68, cell76, cell77, cell78, cell86, cell87, cell88]

Now, we have the following definition of the module split function,

ψm(i) = i mod
√
n

Notice that if we separate the array representation of C3 by the result

of applying ψd to their internal index, we end up with the following sub

arrays:

(ψm(i) = 0) [cell66, cell76, cell86] ⊆ C6,

(ψm(i) = 1) [cell67, cell77, cell78] ⊆ C7,

(ψm(i) = 2) [cell86, cell87, cell88] ⊆ C8.

Notice that the cells are separated by the column they belong to, which is

exactly the result we were expecting.

We also need a method, whose implementation is unrelated to our algo-

rithm, that given the source and target index, and the source and target

bracket type is able to find the target bracket. That means that this method

is able to locate in memory the array that actually holds the cells of the

target brackets. We want to find the array of cells that represents the

bracket so that we can prune it. Since this function is used exclusively

for performance purposes, and is completely independent from Solveku’s

logic. Understanding this function is not necessary, but if the reader is



3. Pruning sections of Solveku 67

interested please check this work’s repository, this analysis we also assume

it is implemented and it is called find target.

The function prune bracket method is the implementation of the bracket

difference prune process, defined in Definition 3.1.6. The method goes

through all the cells in the target bracket, and deletes the

intersection value for the available sets of cells that do not belong to

the intersection Sr ∩ Stthat is not in the intersection set.

1 c l a s s SudokuGrid :

2 ””” . . . ”””

3 de f prune bracket ( s e l f , t a rge t b racke t , i n t e r s e c t i o n , i n t e r s e c t i o n v a l u e ) :

4 r e s = False

5 f o r c e l l in t a r g e t b r a ck e t :

6 i f c e l l not in i n t e r s e c t i o n :

7 i f c e l l . av set remove ( i n t e r s e c t i o n v a l u e ) :

8 r e s = True

9 return r e s

Prune bracket.

Finally, the function prune intersection looks for intersections as de-

fined in Definition 3.1.6 and performs the corresponding pruning. For every

bracket in root brackets, the algorithm assumes it is a root, and it looks

for a candidate such that all cells with an available set containing the can-

didate are in the same intersection bracket. The dictionary target map

maps every candidate with the target index of the first cell containing

it. If a candidate was not in the dictionary it is then mapped to its tar-

get index and a singleton of the current cell. If two cells with a different

target index have the candidate, then that candidate cannot be an inter-

section value and that candidate is mapped to −1. We use −1 because it

cannot be a valid index, since −1 /∈ I. If the dictionary already had an

entry for a candidate with the same target index then the current cell

will just be added to the result of intersection map.

After checking all the cells, every candidate that is mapped to a valid in-

dex is a bracket intersection value. Then, we look for the object of the



3. Pruning sections of Solveku 68

target bracket using find target bracket and then we prune it using

prune bracket.

1 c l a s s SudokuGrid :

2 ””” . . . ”””

3 @staticmethod

4 de f r o o t d i v ( index ) :

5 return in t ( index /math . sq r t ( SudokuGrid . n) )

6

7 @staticmethod

8 de f root mod ( index ) :

9 return in t ( index%math . sq r t ( SudokuGrid . n) )

10

11 de f p r un e i n t e r s e c t i o n ( s e l f , r oo t bracke t s , s p l i t f u n c t i o n , root type ,

t a r g e t t ype ) :

12 target map = {}
13 in t e r s e c t i on map = {}
14 f o r roo t index in s e l f . I :

15 target map . c l e a r ( )

16 in t e r s e c t i on map . c l e a r ( )

17 root = roo t b r a ck e t s [ r oo t index ]

18 f o r c e l l i n d e x in s e l f . I :

19 c e l l = root [ c e l l i n d e x ]

20 t a r g e t i ndex = s p l i t f u n c t i o n ( c e l l i n d e x )

21 i f not c e l l . has va lue ( ) :

22 f o r candidate in c e l l . av s e t :

23 i f not candidate in target map :

24 target map [ candidate ] = ta r g e t i ndex

25 in t e r s e c t i on map [ candidate ] = { c e l l }
26 e l s e :

27 i f target map [ candidate ] == ta rg e t i ndex :

28 in t e r s e c t i on map [ candidate ] . add ( c e l l )

29 e l s e :

30 in t e r s e c t i on map [ candidate ] = None

31 target map [ candidate ] = −1

32 f o r candidate , t a r g e t i ndex in target map . items ( ) :

33 i f t a r g e t i ndex in SudokuGrid . I :

34 t a r g e t b r a ck e t = s e l f . g e t t a r g e t b r a c k e t ( root index ,

ta rge t index , root type , t a r g e t t ype )

35 s e l f . prune bracket ( ta rge t b racke t , i n t e r s e c t i on map [

candidate ] , candidate )

Find intersection.

The stage three() method calls prune intersection with every valid

combination of root and target.

1 c l a s s SudokuGrid :

2 ””” . . . ”””

3 de f s t a g e t h r e e ( s e l f ) :

4 r ow i n t e r s e c t i o n s = s e l f . f i n d i n t e r s e c t i o n ( s e l f . b racket s . box , s e l f .

r oot d iv , box type , row type )

5 c o l i n t e r s e c t i o n s = s e l f . f i n d i n t e r s e c t i o n ( s e l f . b racket s . box , s e l f .

root mod , box type , c o l t ype )



3. Pruning sections of Solveku 69

6 b o x r i n t e r s e c t i o n s = s e l f . f i n d i n t e r s e c t i o n ( s e l f . b racket s . row , s e l f .

r oot d iv , row type , box type )

7 b o x c i n t e r s e c t i o n s = s e l f . f i n d i n t e r s e c t i o n ( s e l f . b racket s . co l , s e l f .

r oot d iv , co l type , box type )

Stage 3

The time complexity of the method prune intersection can be split in

two parts. First, in line 22 of the inside the method prune intersection

is inside three four loops, the one in line 14 and line 18 (O(|I|) = O(n)),

and the four loop in line 22 (O(|Ω|) = O(n)). These result in a O(n) ·O(n) ·
O(n) = O(n3) time complexity.

Besides, in line 32, we are inside of the for loop of line 14 O(n), and line

32 itself goes through every candidate in the target map(O(n)), it prunes

the valid ones. Then, in line 35, prune bracket method has a O(n) time

complexity, since it goes throughout every cell in the target bracket. Which

results in a complexity of O(n) · O(n) · O(n) = O(n3).

Then, for the complete function prune intersection we have a time

complexity of O(n3) + O(n3) = 2O(n3) = O(n3). Finally, for the time

complexity of the stage 3, we have that the stage three method calls

prune intersection four times. So we have a total time complexity of

4 · (O(n3)) = O(n3).



3. Pruning sections of Solveku 70

3.2 Stage Four, Bracket subset

In this stage, we look for a bracket with specific conditions that enables us

to prune the available sets of cells inside this bracket. In contrast to stage

3, we now look for properties within the cells of the bracket. That is, at this

stage, all the information required to prune a bracket will be in the bracket

itself, rather than in a relationship between brackets. More specifically, we

look for a subset of a bracket with certain conditions.

Now, before we define the first type of subset we are looking for, let

us show, with an example, the simplest version of these subsets and their

characteristics. This example should give the reader a general idea before

the formal definition.

Example 3.2.1. For the setting (Fk, γk,ASk) in Figure 3.5, cell10 and

cell20 are in the same column C0, and have the same available set {3, 7}.
Therefore, since ASk is a valid available set function, for any solution γ, we

have that {γ(cell10), γ(cell20)} = {3, 7}. This implies that there cannot be

another cell ∈ C0 such that cell 6= cell10, cell 6= cell20 and γ(cell) ∈ {3, 7}.
Otherwise, a value would be repeated within the bracket C0. Therefore, we

can remove values 3 and 7 from the available sets of the remaining cells in

C0, in this case cell30, cell40 and cell50 are the only cells to be pruned. We

call this scenario naked pair , in agreement with [Ber07] and [Stu08].



3. Pruning sections of Solveku 71

0 1 2 3 4 5 6 7 8

0 1 9 2 3 6 8  
4 5 4 5 5  

7 7 9  
1

3

9 6 4 8 2
3

1  
5 5  

7 7 7  
2

3

8 2 6 1 4 9
3  

5 5  
7 7 7  

3
2 2

9 1
1

4
1

6
2  

5 5  
7 8 7 8 7  

4
2 3

6
3 2 1 2 1 3 2 3

9  
4 4 5 5 5 5 4  
7 8 7 8 8 7 8 7 8  

5
2 3

1
3

6 7 9 5
2 3 2 3  

4 4 4  
8 8  

6 6 7 8
2

3
2

9 1 4  
5 5  

 
7 9

2 3

1
2

4 6
3 2 3 2 3  

5 5 5  
7 8 7 8 7 8 7  

8 5
2 3 3

1 9
2 3 2 3

6  
4 4   

7 8 7 8 7 8

Figure 3.5: Example of a naked pair.

We are going to generalize the idea of the Example 3.2.1. We will see

that a naked pair is a naked subset of size 2 of a bracket. In general, this

type of subsets can have size m where m ∈ {2, . . . , n− 1}.

Definition 3.2.2. For a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0) and

a bracket S, we have that (S,V,V) is a naked subset if the following

conditions are met:

• V ⊆ S subset of cells and V ⊆ Ω subset of values.

• |V| = |V|, same number of cells and values.

• ASk(cell) ⊆ V for every cell ∈ V.



3. Pruning sections of Solveku 72

Once a naked subset is found, then, for every value ω ∈ V, and for every

cell ∈ S \V, ω can be eliminated from the cell’s available set. We call this

process naked subset prune .

Example 3.2.3. For the setting in Figure 3.6, we will prove that

(B1, {cell03, cell04, cell05} , {4, 7, 9}) is a naked subset. This is done by

checking that all the conditions of Definition 3.2.2 are met:

• {cell03, cell04, cell05} ⊆ B1, and {4, 7, 9} ⊆ Ω = {1, . . . , 9}.

• | {4, 7, 9} | = 3 = | {cell03, cell04, cell05} |.

• AS(cell03) = {7, 9} ⊆ {4, 7, 9} ,AS(cell04) = {4, 9} ⊆ {4, 7, 9} ,
AS(cell05) = {4, 7, 9} ⊆ {4, 7, 9}.

0 1 2 3 4 5 6 7 8

0 1 5 2 6 8 3  
4 4  

7 9 9 7 9  
1 8

1

3
1

2
1  

4 6 6 4 5 5 4  
7 9 7 9 7 9 7 9  

2 3
1 2 1 2 1 2 1 1  

4 6 6 4 6 4 5 5 4  
7 9 7 8 9 8 9 7 8 9 7 7 9  

3 4 7 5
1 2 1 2

3 9 6 8  
 
 

4 9 3 8 4 7 6 5 2 1  
 
 

5 2 1 6 5 3 4 7  
 

8 9 8 9  
6 2 1

3 3

5  
6 6 4 6 4  

7 7 8 9 8 9 7 8 9 7 8 7  
7 9 4

1 3

5
1 1 1 3

2  
6 6  

7 7 8 7 8 7 8 7  
8 5 8 3

1 2 1 2 1 2

4 9 6  
 

7 7  

Figure 3.6: Example of a naked subset of size 3.



3. Pruning sections of Solveku 73

So, we have that (B1, {cell03, cell04, cell05} , {4, 7, 9}) is a naked subset.

Now, we are going to show a different type of bracket subset. This new

type of subset will also have conditions for pruning the bracket’s available

sets. Just like with naked subsets, we first illustrate with a basic example

and after that we state the formal definition.

Example 3.2.4. For the setting (Fk, γk,ASk) in Figure 3.7 cell32 and cell42

are the only cells in B3 that have candidates 2 and 4. Since they are the

only cells that can take one of the values {2, 4} and for every solution γ,

there should be cell, cell′ ∈ B3 such that γ(cell) = 2 and γ(cell′) = 4. Then,

we know that for every solution γ, γ(cell32) ∈ {2, 4} and γ(cell42) ∈ {2, 4}.
Therefore, we must have ASk(cell32) = {2, 4} and ASk(cell42) = {2, 4}.
That is, we can delete the other candidates in cell32 and cell42, since these

cells cannot take a value different from 2 or 4. Because if they do, then no

other cell on B3 will be able to take the value 2 or the value 4. We call this

scenario hidden pair , in agreement with [Ber07] and [Stu08].



3. Pruning sections of Solveku 74

0 1 2 3 4 5 6 7 8

0 7 2 4
1

8
1

3
1   

5 6 5 6 6  
9 9 9  

1 8
3 1 3 1 2 2 1

4 7  
5 6 5 6 5 5 5 6  

9 9 9 9  
2 4

3

1
3

7 6 8 2  
5 5 5  

9 9  
3 8 1

2

7 3 9
2  

4 5 6 5 6 5 6 4 6  
 

4
3 2 3

8 5 1
3 2  

6 4 6 6 6 4 6  
9 7 9 7 7 9 9 9  

5
3 3

2 6 4
1 3

8
1  

5 5 5 5  
9 7 9 7 7 9 9  

6 2 9 6 8 4 1 3  
5 5  

7 7  
7 3 4

1 1 2 2

8  
5 5 5 6 6  

7 7 9 9  
8 1 6 8 9 4 3 2 7 5  

 
 

Figure 3.7: Example of a hidden pair.

Now, we generalize the idea of hidden pairs from size 2 to size m where

m ∈ {2, . . . , n− 1}.

Definition 3.2.5. For a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0), and a

bracket S, we have (S,U,U) is a hidden subset if the following conditions

are met:

• U ⊆ S subset of cells and U ⊆ Ω subset of values.

• |U| = |U|.

• ASk(cell) ⊆ Ω \ U for every cell ∈ S \ U.

After finding a hidden subset, for every ω ∈ Ω \ U , and for every cell ∈ U,



3. Pruning sections of Solveku 75

we see that ω can be eliminated from AS(cell), and we call this process

hidden subset prune .

Now we show an example of a bigger hidden subset.

Example 3.2.6. For the setting (Fk, γk,ASk) in Figure 3.8 we prove that

(B4, {cell33, cell35, cell53, cell55} , {1, 2, 5, 7}) is a hidden subset of size 4. Let

us check that every condition of Definition 3.2.5 is met:

• U = {cell33, cell35, cell53, cell55} ⊆ B4, and U = {1, 2, 5, 7} ⊆ Ω.

• | {1, 2, 5, 7} | = 4 = | {cell33, cell35, cell53, cell55} |.

• Since U = {1, 2, 5, 7}, we then have Ω \ U = {3, 4, 6, 8, 9}. Now,

ASk(cell34) = {3, 4, 8, 9} ⊆ Ω \ U ,
ASk(cell43) = {4, 8, 9} ⊆ Ω \ U ,
ASk(cell44) = {3, 4, 6, 8, 9} ⊆ Ω \ U ,
ASk(cell45) = {4, 6, 8, 9} ⊆ Ω \ U ,
ASk(cell54) = {3, 4, 6, 8, 9} ⊆ Ω \ U .



3. Pruning sections of Solveku 76

0 1 2 3 4 5 6 7 8

0 1 5 9 6 7 2 3  
4 4  

8 8  
1 3 7 2 1  

4 4 5 4 5 4 5 6 4 6  
8 8 9 8 9 8 9  

2 2 6 3 1 7  
4 4 5 4 5 4  

8 8 9 8 9  
3 6

1 2 3 1 2 1 3  
4 4 5 4 5 4 4 5 4 4  
7 8 8 7 8 9 8 9 8 9 8 9 8 9  

4
3

1 2
3

5 7
3  

4 4 4 6 4 6 4 6  
8 9 8 9 8 9 8 9 8 9  

5
3 1 3 1 1

2  
4 4 4 5 4 5 4 6 4 5 6 4 6  

8 9 7 8 8 7 8 9 8 9 8 9 8 9  
6

1 1 2

5
1 2

3 9 7  
4 4 4 6 4 4 6  

8 8 8 8 8  
7 5 9 3 7 6 2 1  

4 4   
8 8   

8 7 2
1 1

3 4 8 5  
6 6  

9 9   

Figure 3.8: Example of a hidden subset of size 4.

3.2.1 Sudoku theory

Now, we state a theorem that shows that for every naked subset, there

exists a complementary hidden subset in the same bracket, and the cells

of the naked and its complementary hidden subset form a partition of the

“parent” bracket. However, prior to that, we present the following lemma

that will be used in the proof of the naked and hidden relationship theorem.

Lemma 3.2.7. Let X,Y be two sets such that X ⊆ Y , then Y \(Y \X) = X.

Proof. Let Z = Y \X, then Z ⊆ Y , Z∪X = Y , and X ∩Z = ∅. Therefore,



3. Pruning sections of Solveku 77

Y \ (Y \X) = Y \ Z = (X ∪ Z) \ Z = X ∪ ∅ = X.

With that in mind, we now state the theorem mentioned earlier. The

theorem declares that a naked subset exists in a bracket if and only if the

remaining cells form a hidden subset.

Theorem 3.2.8. For a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0), S a

bracket, V ⊆ S and V ⊆ Ω, then (S,V,V) is a naked subset if and only if

(S,S \ V,Ω \ V) is a hidden subset.

Then, (S,V,V) and (S, S\V,Ω\V) are called complementary subsets.

Proof. We will use the following two equations throughout the proof. Since

(S,V,V) is a naked subset, we have |V| = |V|. Let us define m = |V|.
Also, since V ⊆ S, we have

|S \ V| = |S| − |V|. (3.2)

Additionally, since V ⊆ Ω, we have

|Ω \ V| = |Ω| − |V|. (3.3)

First, we assume that (S,V,V) is a naked subset and we are going to prove

that (S,S \ V,Ω \ V) is a hidden subset, that is, we check that the three

conditions of Definition 3.2.5 hold for (S,S \ V,Ω \ V):

C1, S \ V ⊆ S and Ω \ V ⊆ Ω:

It is clear that S \ V ⊆ S and Ω \ V ⊆ Ω.

C2, |S \ V| = |Ω \ V|:
Since (S,V,V) is a naked subset, we have |V| = |V|, then V = m.

By (3.2) and (3.3), we have |S\V| = |S|−|V| = n−m = |Ω|−|V| =
|Ω \ V|.



3. Pruning sections of Solveku 78

C3, ASk(cell) ⊆ Ω \ (Ω \ V) for every cell ∈ S \ (S \ V):

First, since (S,V,V) is a naked subset, according to the third con-

dition of the definition, we have that: AS(cell) ⊆ V for every

cell ∈ V, then, applying Lemma 3.2.7 to (V,Ω) and (V,S) we

get AS(cell) ⊆ Ω \ (Ω \ V) for every cell ∈ S \ (S \ V).

Therefore, we see that (S, S \ V,Ω \ V) is a hidden subset.

Now, for the second part of the proof, we assume that (S,S \V,Ω \ V) is

a hidden subset, and we will prove that (S,V,V) is a naked subset.

C1, V ⊆ S and V ⊆ Ω:

It is clear that V ⊆ S and V ⊆ Ω by hypothesis.

C2, |V| = |V|:
By hypothesis, since (S,S \ V,Ω \ V) is a hidden subset we have

|S \ V| = |Ω \ V|. Then, by (3.2) and (3.3), we have |S| − |V| =

|Ω| − |V|, therefore, n− |V| = n− |V|, finally |V| = |V|.

C3, AS(cell) ⊆ V for every cell ∈ V:

We know that (S,S \V,Ω \ V) is a hidden subset, and by the third

condition we get AS(cell) ⊆ Ω \ (Ω \ V) for every cell ∈ S \ (S \V).

Now, applying Lemma 3.2.7 for (V,Ω) and (V, S) we get AS(cell) ⊆
V for every cell ∈ V.

Therefore, (S,V,V) is a naked subset.

Finally, we conclude that (S,V,V) is a naked subset if and only if (S,S \
V,Ω \ V) is a hidden subset.

We are now going to formalize the process of the naked subset prune and

the hidden subset prune. Then, we will prove that applying them does not

lose solutions. We start with the formalization of the naked subset prune.

Given a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0) and a naked subset

(S,V,V), let fN4 be the function that receives a setting and a naked subset



3. Pruning sections of Solveku 79

and produces a new setting with a naked subset prune. We define

(Fk+1, γk+1,ASk+1) = fN4((Fk, γk,ASk), (S,V,V))

= (Fk, γk, f3
N4(ASk,S,V,V)),

we define f3
N4

∣∣
cell

for every cell ∈ G

ASk+1(cell) = f3
N4(ASk, S,V,V)

∣∣
cell

=


ASk(cell) if cell ∈ G \ S

ASk(cell) if cell ∈ V

ASk(cell) \ V if cell ∈ S \ V
(3.4)

Now, we prove that no solution is lost when applying the just-described

naked subset prune to a setting.

Theorem 3.2.9. For a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0), and a

naked subset (S,V,V),

fN4((Fk, γk,ASk), (S,V,V)) = (Fk+1, γk+1,ASk+1) is a setting.

Proof. By definition of fN4 we have that Fk+1 = Fk, so Fk ⊆ Fk+1 and

γk+1 = γk, then γk � γk+1. Therefore, the only thing left to prove is that

ASk+1 is a valid available set function. Aiming for a contradiction, let us

suppose it is not. Then there must exist a solution γ, and a cell′ ∈ G such

that γ(cell′) /∈ ASk+1(cell′).

We have that ASk is a valid available set function, therefore γ(cell′) ∈
ASk(cell

′), so we can conclude the following relation:

γ(cell′) ∈ ASk(cell
′) \ASk+1(cell′). (3.5)

Case 1, cell′ ∈ G \ S or cell′ ∈ V:

Then, by definition of f3
N4, we have ASk+1 = ASk, then by (3.5) we



3. Pruning sections of Solveku 80

have γ(cell′) ∈ ∅, which is a contradiction.

Case 2, cell′ ∈ S \ V:

Then, by definition of f3
N4, we have that ASk+1 = ASk \ V, then by

(3.5) we have that γ(cell′) ∈ ASk \ (ASk \ V). By definition of set

difference ASk \ (ASk \ V) = ASk \ (ASk \ (ASk ∩ V)). Now, we can

apply Lemma 3.2.7, and we get γ(cell′) ∈ (ASk ∩ V), in particular

γ(cell′) ∈ V.

Let γ(cell′) = v ∈ V.

So we have that cell′ is not in V because we are in Case 2, but its

value is in V.

Given the fact that (S,V,V) is a naked subset, we know from the

third condition of the Definition 3.2.2 of naked subset that

ASk(cell) ⊆ V for every cell ∈ V (3.6)

And since ASk is a valid available set function for every cell ∈ V
we have γ(cell) ∈ V. But, for every cell ∈ V, different than cell′,

since cell′ ∈ S \ V we see that cell′ and cell are neighbors, and

two neighbors cannot have the same value. Therefore, for every

cell ∈ V, we must have γ(cell) ∈ V \ {v}.

Then we get m cells in V, and m− 1 values in V \ {v}, and every

cell should take a value in V \ {v} without repeating because they

are in the same bracket S. This is clearly not possible because we

have fewer values than cells.

We can then conclude that there exists a cell∗ ∈ V such that

γ(cell∗) /∈ V. Also, cell∗ ∈ V, then (3.6) implies that ASk(cell
∗) ⊆

V. Therefore, γ(cell∗) /∈ ASk(cell
∗) which is a contradiction be-

cause ASk is a valid available set function.



3. Pruning sections of Solveku 81

Then, by reducto ad absurdum, ASk+1 is a valid available set function,

subsequently (Fk+1, γk+1,ASk+1) is a setting.

Now, we formally define the hidden subset prune.

Given a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0) and a hidden subset

(S,U,U), let fH4 be the function that receives a setting and an intersection

and produces a new setting with a hidden subset prune. We define

(Fk+1, γk+1,ASk+1) = fH4((Fk, γk,ASk), (S,U,U))

= (Fk, γk, f3
H4(ASk,U,U))

where, for every cell ∈ G :

ASk+1(cell) = f3
H4(ASk,U,U)

∣∣
cell

=

ASk(cell) if cell ∈ G \ U

ASk(cell) ∩ U if cell ∈ U
(3.7)

Now, we are going to prove that no solutions are lost when applying a

hidden subset prune to a setting (Fk, γk,ASk). We take advantage of The-

orem 3.2.9, which states that a naked subset prune does not lose solutions.

First, we will prove that the prune performed by a hidden subset prune

fH4 is exactly the same as the prune performed by its complementary

naked subset prune fN4. Then, since we have proven that every naked

subset prune does not lose solutions, we can conclude that every hidden

subset prune also does not lose solutions.

The following theorem proves that complementary prunes are the same.

Theorem 3.2.10. Given a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0) and

a naked subset (S,V,V) with its complementary hidden subset (S,U,U) de-

fined in Theorem 3.2.8. Let (Fk, γk,ASN ) be the result of applying the naked



3. Pruning sections of Solveku 82

subset prune:

(Fk, γk,ASN ) := fN4((Fk, γk,ASk), (S,V,V)),

and let (Fk, γk,ASH) be the result of applying the hidden subset prune:

(Fk, γk,ASH) := fH4((Fk, γk,ASk), (S,V,V)).

Then ASN = ASH .

Proof. Since (S,V,V) and (S,U,U) are complementary subsets, we have

the following equations

U = S \ V (3.8)

and

U = Ω \ V (3.9)

Now, let us prove that ASN (cell) = ASH(cell) for every cell ∈ G. Please

recall the formal definition of naked subset prune fN4 (3.4), page 79, and

the definition of hidden subset prune fH4 (3.7), page 81.

Case 1, cell ∈ G \ S:

By definition of f3
N4, we have ASN (cell) = ASk(cell). By definition

of f3
H4, since cell ∈ G \ S, then cell ∈ G \ U because U ⊆ S, then

we have ASH(cell) = ASk(cell). Therefore, ASN (cell) = ASH(cell).

Case 2, cell ∈ V:

By definition of f3
N4, we have ASN (cell) = ASk(cell).

Now, for f3
H4, and cell ∈ V, we also get cell ∈ S \ U, by equation

(3.8) and Lemma 3.2.7 we have V = S \ (S \ V) = S \ U ⊆ G \
U. Therefore, the definition of f3

H4 gives ASH(cell) = ASk(cell)

Therefore, ASN (cell) = ASH(cell).

Case 3, cell ∈ S \ V:

By definition of f3
N4, we have ASN (cell) = ASk(cell) \ V.



3. Pruning sections of Solveku 83

Now, for f3
H4, since cell ∈ S \ V, it means cell ∈ U, due to (3.8).

Then, by the definition of f3
H4, we have ASH(cell) = ASk(cell) ∩

U . Furthermore, we have U = Ω \ V because of (3.9). Then,

ASH(cell) = ASk(cell)∩ (Ω \ V) = ASk(cell) \ V. Therefore, we can

conclude that ASN (cell) = ASH(cell).

In summary, we have ASN (cell) = ASH(cell) for every cell ∈ G.

Now that we have proven that the prune of complementary subsets is

the same, we are going to prove that no solution is lost when applying a

hidden subset prune to a setting.

Corollary 3.2.11. For a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0) and a

hidden subset (S,U,U),

fH4((Fk, γk,ASk), (S,U,U)) = (Fk+1, γk+1,ASk+1) is a setting.

Proof. Using Theorem 3.2.8, page 77, we know that there exists a comple-

mentary naked subset (S, S \ U,Ω \ U). Now, applying the last Theorem

3.2.10, we get the following:

fN4((Fk, γk,ASk), (S,S \ U,Ω \ U)) =

fH4((Fk, γk,ASk), (S,U,U)) = (Fk+1, γk+1,ASk+1).

By Theorem 3.2.9 page 79, we know that every naked subset prune produces

a setting. That is, fN4((Fk, γk,ASk), (S,S\U,Ω\U)) is a setting. Therefore,

(Fk+1, γk+1,ASk+1) is a setting.

3.2.2 Implementation

The implementation for finding subsets and pruning them is not straight-

forward; hence we will divide this subsection into two: Theory and code.



3. Pruning sections of Solveku 84

In the theoretic part, we introduce a concept that is a generalization of

both types of subsets (naked and hidden). Having a concept that groups

both types of subsets helps us simplify the implementation by reusing code.

In the code part we will apply the theory to search for subsets and calculate

the time complexity.

Theory

First, we will introduce two general concepts that will eventually include

naked and hidden subsets.

Definition 3.2.12. Given two sets X and Y and a function φ : X → P(Y ),

we define (X, Y , φ) as a cover if the following conditions are met:

• 1 ≤ |X| = |Y |.

• φ(x) ⊆ Y for every x ∈ X.

We refer to φ as cover function and X,Y as cover domain and cover

image , respectively. We say that m is the size of a cover if m = |X| = |Y |

We introduce covers because we want to group both naked and hidden

subsets into one concept. Since both types of subsets are subsets of a

bracket, we want the tuple (S,Ω,ASk) to be a cover, where (Fk, γk,ASk) is

a setting of a puzzle (n,F0, γ0), and S is a bracket. This is not the case

because the domain of ASk is the whole grid G, and not the bracket S.

However, with the following restriction we will be able to use only the part

of ASk that we are interested in.

Definition 3.2.13. Given a function φ : X → Y , and a subset X̃ ⊆ X, we

define φX̃ : X̃ → Y as follows: φX̃(x) = φ(x) for every x ∈ X̃.

We say that φX̃ is a restricted function , and, particularly, φX̃ should

be read as φ restricted to X̃.



3. Pruning sections of Solveku 85

It is important to notice that restrictions to functions can be recursively

applied, meaning, we can restrict a function that was previously restricted

whenever the new domain is a subset of the previous domain. For this

scenario, we will use the following notation: For a function φ : X → Y , and

X2 ⊆ X1 ⊆ X we denote

φ(X1)(X2) := (φ(X1))(X2) = φX2

Now, we prepare a theorem about equivalent restricted functions.

Corollary 3.2.14. For a function φ : X → Y , and X2 ⊆ X1 ⊆ X, we

have that φ(X2) = φ(X1)(X2).

A special case of φ(X1) is ASk(S), which will be used frequently in the

following pages.

Lemma 3.2.15. For a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0), and a

bracket S, we have that (S,Ω,ASk(S)) is a cover.

Proof. Since S is a bracket, we have |S| = |Ω| = n, and since ASk is a valid

available set function, we have ASk(S)(cell) ⊆ Ω.

Finally, we define the concept that we were longing to state, because

eventually this concept will include both naked and hidden subsets.

Definition 3.2.16. Given a cover (X,Y, φ), we define (X ′, Y ′, φ(X′)) as

subcover if the following conditions are met:

• X ′ ⊆ X and Y ′ ⊆ Y .

• (X ′, Y ′, φ(X′)) is a cover.

Now, we state a theorem that relates naked subsets and subcovers.



3. Pruning sections of Solveku 86

Theorem 3.2.17. For a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0), then

(S,V,V) is a naked subset if and only if (V,V,ASk(V)) is a subcover of

(S,Ω,ASk(S)).

Proof. In this case, we are going to prove that (V,V,ASk(V)) is a subcover

of (S,Ω,ASk(S)).

We assume that (S,V,V) is a naked subset, and we will prove that

(V,V,ASk(V)) is a subcover of (S,Ω,ASk(S)). By Definition 3.2.2, page 71 of

a naked subset, we have V ⊆ S, V ⊆ Ω. Then, the only thing left to prove

is that (V,V,ASk(V)) is a cover. First, let m = |V|, by Definition 3.2.2 of a

naked subset, we have |V| = |V| = m and ASk(cell) ⊆ V for every cell ∈ V.

Also by Definition 3.2.13 of restricted function ASk(V), we have that for

every cell ∈ V, ASk(V)(cell) = ASk(cell), and we get that for every cell ∈
V that ASk(V)(cell) ⊆ V.

Now, by Corollary 3.2.14 we have that ASk(V) = ASk(S)(V). There-

fore, all conditions of Definition 3.2.16 are satisfied and we conclude that

(V,V,ASk(V)) is a subcover of (S,Ω,ASk(S)).

Now, on the other hand, we assume that (V,V,ASk(V)) is a subcover of

(S,Ω,ASk(S)), and we have to show that (S,V,V) is a naked subset, that is,

we check the three conditions in Definition 3.2.2:

C1, V ⊆ S and V ⊆ Ω:

By Definition 3.2.16 of the subcover, we get V ⊆ S, and V ⊆ Ω.

C2, |V| = |V|:
Since (V,V,ASk(V)) is a subcover, it is also a cover; therefore, we

have |V| = |V|.

C3, For every cell ∈ V we need ASk(cell) ⊆ V:



3. Pruning sections of Solveku 87

By the definition of cover, for every cell ∈ V we get ASk(V)(cell) ⊆
V, and by the definition of a restricted function, for every cell ∈ V
we have ASk(V)(cell) = ASk(cell), which implies ASk(cell) ⊆ V.

Then we finally see that (S,V,V) is a naked subset if and only if (V,V,ASk(V))

is a subcover of (S,Ω,ASk(S))

Recall that we introduced subcovers to include naked and hidden subsets,

but so far we have only proved that naked subsets are subcovers. To include

hidden subsets as subcovers, we will have to look at things from a different

perspective.

Previously, we have used a function AS that relates each cell to a set of

candidates, and when this relationship satisfies certain conditions, we know

that we have found a naked subset.

For hidden subsets, we will want to see the relationship between cells and

candidates from the opposite point of view. Instead of having a function

that relates a cell with its set of candidates, we want a function that relates

each candidate to the set of cells whose available sets contain the candidate.

However, since we are looking for the cover of a bracket, we are going to

limit the image of this function to a bracket that contains the cells we

are interested in. Consequently, we will take the preimage of an available

set function that is restricted to a specific bracket and candidate ω. We

will loosely use the attribute inverse instead of the preimage. We use the

notation AS−1
k(S), which is a shorthand notation of (ASk(S))

−1. That is, first

we restrict the function and then take the preimage.

Definition 3.2.18. For a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0) and a

bracket S we define:

AS−1
k(S)(ω) = {cell1, . . . , cellp}



3. Pruning sections of Solveku 88

where ω ∈ Ω and {cell1, . . . , cellp} ⊆ S such that ω ∈ ASk(cell1), . . . , ω ∈
ASk(cellp).

Now, we include hidden subsets as covers by defining the cover of a

bracket with this inverse relationship as the cover function.

Lemma 3.2.19. For a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0) and a

bracket S, the tuple (Ω, S,AS−1
k(S)) is a cover.

Proof. Since S is a bracket, |S| = |Ω| = 9. By the definition of the inverse

available set function we have AS−1
k(S)(ω) ⊆ S for each ω ∈ Ω.

Now, before proving that hidden subsets are also subcovers, let us state

an equivalence that will be useful for establishing the relation between

hidden subsets and subcovers.

Theorem 3.2.20. For a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0), a

bracket S, and U ⊆ S, U ⊆ Ω we see that (S,U,U) is a hidden subset

if and only if (U ,U, (AS−1
k(S))(U)) is a subcover of (Ω, S,AS−1

k(S)).

Note that the order of S and Ω changed compared to Theorem 3.2.17.

Proof. First, we assume (S,U,U) is a hidden subset, we are going to prove

that (U ,U, (AS−1
k(S))(U)) is a subcover of (Ω,S,AS−1

k(S)). Therefore, we have

to prove the following pair of conditions:

C1, U ⊆ S,U ⊆ Ω:

By hypothesis we have that this condition is true.

C2, (U ,U, (AS−1
k(S))(U)) is a cover:

Using the definition of hidden subsets, we have |U| = |U|. We only

have left to prove that (AS−1
k(S))(U)(ω

′) ⊆ U for every ω′ ∈ U . By

Definition 3.2.18, we have the following self evident equivalence:



3. Pruning sections of Solveku 89

There exists ω′ ∈ U such that (AS−1
k(S))(U)(ω

′) ∩ (S \ U) 6= ∅,

if and only if

there exists a cell′ ∈ S \ U such that ASk(cell
′) ∩ U 6= ∅. (3.10)

Let us suppose C2 is false, then we have that it exists ω′ ∈ U
such that (AS−1

k(S))(Ω\U)(ω
′) ∩ S \ U 6= ∅ and by (3.10) we have a

contradiction since there exists cell′ ∈ S \U such that ASk(cell
′) ∩

U 6= ∅ which means that (S,U,U) is not a hidden subset. Then

(U ,U, (AS−1
k(S))(U)) is a cover.

Therefore (U ,U, (AS−1
k(S))(U)) is a subcover of (Ω,S,AS−1

k(S)).

Now, on the other hand, we assume that (U ,U, (AS−1
k(S))(U)) is a subcover

of (Ω, S,AS−1
k(S)), and we show that (S,U,U) is a hidden subset.

According to the definition of hidden subsets Definition 3.2.5, page 74,

we have to verify the following conditions:

C1, U ⊆ S and U ⊆ Ω:

By hypothesis we have that this condition is true.

C2, |U| = |U|:
By definition of subcover we have that |U| = |U|.

C3, ASk(cell) ⊆ Ω \ U for every cell ∈ S \ U:

Let us suppose C3 is false then there exists cell′ ∈ S \ U such

that ASk(cell
′) ∩ U 6= ∅. Now, applying (3.10) we have that it

exists ω′ ∈ U such that (AS−1
k(S))(U)(ω

′) ∩ (S \ U) 6= ∅, which is a

contradiction since (U ,U, (AS−1
k(S))(U)) is a subcover of (Ω,S,AS−1

k(S)).

Since all conditions are met, we see that (S,U,U) is a hidden subset. Finally,

(S,U,U) is a hidden subset if and only if (Ω \ U ,S \ U, (AS−1
k(S))(Ω\U)) is a

subcover of (Ω,S,AS−1
k(S)).



3. Pruning sections of Solveku 90

We have now included both types of subsets as subcovers. Now, the

following concept will be used when searching for subcovers, in the context

of sudokus.

Definition 3.2.21. We say that a subcover (X ′, Y ′, φ(X′)) of (X,Y, φ) is

isolated if (X \X ′, Y \ Y ′, φX\X′) is a subcover.

The concept of isolation is useful because, in the context of sudokus, if

the subcover representation of a subset is isolated, it means that there is

no extra information given by the subset. Meaning that if a subcover is

isolated, the subset (hidden or naked) represented by that subcover is not

able to do any subset pruning. Therefore, we have to search exclusively for

non-isolated covers.

Example 3.2.22. For the setting (Fk, γk,ASk) in Figure 3.9. Let V =

{cell81, cell82}, and V = {1, 5} we find that (B6,V,V) is a naked subset.

Then, we know, by Theorem 3.2.17 that (V,V,ASk(V)) is a subcover of

(B6,Ω,ASk(B6)). Now, let us verify that (V,V,ASk(V)) is isolated. We need

to check that (B6 \V,Ω \ V,ASk(B6\V)) is a subcover. That is, we are going

to verify that for each cell ∈ B6 \ V, we have that ASk(B6\V)(cell) ⊆ Ω \ V.

The set S \ V is equal to {cell60, cell61, cell62, cell70, cell71, cell72, cell80}.

• ASk(S)(cell60) = {7} ⊆ Ω \ V,

• ASk(S)(cell61) = {3} ⊆ Ω \ V,

• ASk(S)(cell62) = {2, 8} ⊆ Ω \ V,

• ASk(S)(cell70) = {9} ⊆ Ω \ V,

• ASk(S)(cell71) = {2, 8, 6} ⊆ Ω \ V,

• ASk(S)(cell72) = {2, 8, 6} ⊆ Ω \ V,

• ASk(S)(cell80) = {4} ⊆ Ω \ V.

Therefore, we can conclude that (V,V,ASk(V)) is isolated. Notice that, as



3. Pruning sections of Solveku 91

we stated, there are no values to prune with a naked subset prune.

0 1 2 3 4 5 6 7 8

0 2 9 4 5 1 3 6  
 

7 8 7 8  
1 6 8 4 2 3 1 9  

5 5  
7 7  

2 3
1 1

6 9 7 2 5 4  
 

8 8  
3

1 1 2 1 2 3 2 3

5 6
1 2 2 3  
4 4  

8 7 8 7 8 9 7 8 9 7 8 9 8  
4

1

4
1 2 3

8
1 1

6
2 3  

5 5 5  
7 9 9 7 9  

5
1 1 2 1 2 3

4 7
1 1 2 2 3  

5 5 6 5 6 5  
8 8 8 9 9 8 9 8 9 8  

6 7 3
2

1 6 4
2

5  
 

8 8 9 8 9  
7 9

2 2

7 3 5
2

1  
6 6 4 4  

8 8 8 8  
8 4

1 1

9 2 8 6 3 7  
5 5  

 

Figure 3.9: Example of an isolated subcover.

It is interesting to note that when a subset is found, after the pruning

is done, the cover corresponding to the resultant subset will always be

isolated.

In this context, when the cover representation of a subset is isolated,

then the subset is both a naked and a hidden subset, which means that the

complementary set is a naked and a hidden subset as well.



3. Pruning sections of Solveku 92

Code

We will implement a way to look for every naked subset and hidden subset

in the grid and then make the corresponding prune. First of all, we are

going to create a class Cover for any kind of covers, this class will have a

functionality that looks for subcovers. Looking for subcovers of any size

is not trivial. Therefore, we will make this functionality dependent on the

size of the subcover.

Once the cover class is defined, we assign two covers to every bracket S.

The first represents the cover (S,Ω,ASk(S)) for naked subsets. The second

uses the inverse available set function (Ω,S, (AS−1
k(S))(U)), which represents

hidden subsets that we denote as inverse covers. Finally, we will look for

subcovers in all the covers we created; if a subcover is found in the standard

covers, we have found a naked subset, then if a subcover is found in the

inverse covers, we have found a hidden subset. Therefore, we will add

two methods, one for naked subsets and one for hidden subsets; these will

look for subcovers in the corresponding type of bracket cover, and if one is

found, they will extract the cells and candidates involved. Then, we prune

the cells and candidates accordingly.

The algorithm in the class Cover that finds a subcover is recursive and

complicated to understand, so, we are going to show a pseudocode of a

simpler version of the algorithm to explain how it works and to calculate

its time complexity. After that we will only show the code added to the

SudokuGrid class, assuming that we got the Cover class working correctly.

If the reader is interested in the code of the Cover class and how we imple-

mented the search for subcovers we have the code in the repository of this



3. Pruning sections of Solveku 93

work.

Input: A setting (Fk, γk,ASk), and a bracket S.

if We are looking for naked subsets then

X := S is a set of cells ;

Y := Ω is a set of candidates ;

φ : X → P(Y ) is ASk(S)

else

X := Ω is a set of candidates ;

Y := S is a set of cells ;

φ : X → P(Y ) is (AS−1k(S)) ;

end

foreach X ′ subset of size m of X do

Y ′ =
⋃

x′∈X′ φ(x′) ;

if |Y ′| = m then

We have a subcover ;

if
⋃

x∈X\X′ φ(x) ∩ Y ′ 6= ∅ then

The subcover is not isolated ;

return (X ′, Y ′) ;

end

end

end

return (∅, ∅) ;

Algorithm 1: Find a non-isolated subcover

When |Y ′| = m is satisfied, we have found a subcover, because by the

definition of Y ′ for every x′ ∈ X ′ we get φ(x′) ⊆ Y ′, and of course |X ′| =

|Y ′|. When we ask if X ′ is a subset of X of size m, we are checking if the

subcover that we have just found is not isolated, see Definition 3.2.21 of an

isolated subcover.

For the time complexity of the algorithm, iterating through every subset

of size m from a parent set of size n can be seen as making m nested loops,

where each for loop selects one element of the parent set, if we arbitrarily

order the parent set. Since we do not want to repeat elements, the first for



3. Pruning sections of Solveku 94

loop starts with the first element, but the second starts one after the first,

and so on and so forth. To iterate every subset of size m we end up with

the following time complexity O(n · (n − 1) · . . . · (n − (m − 1))), which is

equal to O(nm+αm−1n
m−1 + . . .+α1n+α0) where αi is a natural number

for every i ∈ {0, . . . ,m− 1}. Therefore, we end up with a time complexity

of O(nm).

However, for each of the subsets we have two if conditions; both of them

calculate the union of sets. First, for
⋃
x′∈X′ φ(x′), for every x′ ∈ X ′, we

know that |φ(x′)| ≤ |Y | = n. And since |X ′| = m, in the worst case, we

are calculating a union of m sets of size |n|, which means that we have

a time complexity of O(mn). Next, for
⋃
x∈X\X′ φ(x) ∩ Y ′ we know that

|X \X ′| < |X| = n and |φ(x)| ≤ n for every x ∈ X \X ′. Therefore, we have

a time complexity of O(n2). Finally, for the whole Find subcover algorithm,

we have a time complexity of O(nm) · O(mn) · O(n2) = O(m · nm+3):

O(Find subcover) = O(nm+3). (3.11)

Now that we have the algorithm for finding a subcover and its complexity,

we can move on assuming we have a Cover class which has a find subcover

method. To create a Cover object it is necessary to provide two parallel

arrays, the first one representing the cover’s domain and the second one its

image.

For each bracket S, we will add the cover (S,Ω,ASk(S)) by adding the

method define covers to the Bracket class. And we do the same thing

for the inverse cover (Ω, S,AS−1
k(S)) by adding define inverse covers to

Bracket. The method inverse av set is just an implementation of AS−1
k(S)

for a specific bracket S.

These methods are called from a function in SudokuGrid that creates the

covers for that grid.

1 c l a s s Bracket :



3. Pruning sections of Solveku 95

2 ””” . . . ”””

3 de f d e f i n e c o v e r s ( s e l f ) :

4 s e l f . cover s = [ Cover ( SudokuGrid . I , [ c e l l . av s e t f o r c e l l in bracket ] )

f o r bracket in s e l f . a l l ]

5

6 de f i n v e r s e a v s e t ( s e l f , bracket ) :

7 raw av se t s = [{ i f o r i in SudokuGrid . I i f bracket [ i ] . a v s e t i s not

None and omega in bracket [ i ] . a v s e t } f o r omega in

8 SudokuGrid .Omega ]

9 return [ av s e t i f 1 <= len ( av s e t ) e l s e None f o r av s e t in raw av se t s ]

10

11 de f d e f i n e i n v e r s e c o v e r s ( s e l f ) :

12 s e l f . i n v e r s e c o v e r s = [ Cover ( SudokuGrid .Omega , s e l f . i n v e r s e a v s e t (

bracket ) ) f o r bracket in s e l f . a l l ]

13

14

15 c l a s s SudokuGrid :

16 ””” . . . ”””

17 de f d e f i n e b r a c k e t c o v e r s ( s e l f ) :

18 s e l f . b racket s . d e f i n e c o v e r s ( )

19 s e l f . b racket s . d e f i n e i n v e r s e c o v e r s ( )

Now, using the cover class in the SudokuGrid class, we define the method

find subset that receives an array of Cover elements and looks through

the array for a subcover of size m. If it finds a subcover, the method returns

it, as well as the index of the subcover in the covers parameter. If not, it

returns None.

1 c l a s s SudokuGrid :

2 ””” . . . ”””

3 de f f i n d sub s e t ( s e l f , covers , m) :

4 f o r index in range ( l en ( cover s ) ) :

5 cover = cover s [ index ]

6 subcover = cover . f i nd subcove r (m)

7 i f subcover i s not None :

8 return [ index , subcover ]

9 return None

The prune cells method receives a list of cells and a list of candidates,

and then removes all candidates from the available sets of cells in the list.

Finally, the methods find naked subset and find hidden subset use

the method find subset to look for a subcover of size m. When a subcover

is found, they convert the subcover back to cells and candidates, which

is followed by the corresponding prune cells call. Because in the case



3. Pruning sections of Solveku 96

of naked subsets the cover domain is made up of cells and the image of

candidates. In the case of hidden subsets, the cover domain consists of

candidates and the image consists of cells.

1 c l a s s SudokuGrid :

2 ””” . . . ”””

3 de f f i nd naked subse t ( s e l f , m) :

4 s u b s e t r e s u l t = s e l f . f i n d sub s e t ( s e l f . b racket s . covers , m)

5 i f s u b s e t r e s u l t i s not None :

6 index , subcover = s ub s e t r e s u l t

7 naked indexes , naked values = subcover

8 bracket = s e l f . b racket s . a l l [ index ]

9 s e l f . p r u n e c e l l s ( [ bracket [ i ] f o r i in SudokuGrid . I i f i not in

naked indexes ] , naked values )

10

11 de f f i nd h idden sub s e t ( s e l f , m) :

12 s u b s e t r e s u l t = s e l f . f i n d sub s e t ( s e l f . b racket s . i nv e r s e c ov e r s , m)

13 i f s u b s e t r e s u l t i s not None :

14 index , subcover = s ub s e t r e s u l t

15 hidden values , h idden indexes = subcover

16 bracket = s e l f . b racket s . a l l [ index ]

17 s e l f . p r u n e c e l l s ( [ bracket [ i ] f o r i in h idden indexes ] ,

18 [ omega f o r omega in SudokuGrid .Omega i f omega not

in h idden va lues ] )

19

20 de f s t a g e f ou r ( s e l f ,m) :

21 s e l f . d e f i n e b r a c k e t c o v e r s ( s e l f )

22 s e l f . f i nd naked subse t (m)

23 s e l f . f i nd h idden sub s e t (m)

The time complexity of find naked subset and find hidden subset is

O(3 · n) · O(Find subcover). That is,

O(find naked subset) = O(3 · n) · O(m · nm+3) = O(m · nm+4)

and O(find hidden subset) = O(m · nm+4) as well.

We can conclude that

O(stage four) = 2O(m · nm+4) = O(m · nm+4).



3. Pruning sections of Solveku 97

3.3 Stage Five, Orthogonal subsets

In this stage, for a fixed candidate ω, we look for a subset of the entire

grid, made up by rows and columns that have cells with ω as a candidate.

This technique is similar to the one implemented in stage four, the main

difference being that it needs multiple brackets and that it is only able to

prune one candidate for each subset. By a candidate, we mean one specific

number; however, this candidate can be pruned from different cells. Let us

start with an example to illustrate the technique we want to apply.

Example 3.3.1. For the setting shown in Figure 3.10 we make the follow-

ing assertion:

There are only two cells in rows R2 and R4 that have the candidate 4

and, in both cases, they lie in columns C1,C4.

(3.12)

Therefore, we can conclude the following two assertions about where can-

didate 4 is located, for every solution γ and its set associated function Γ,

we have that 4 ∈ Γ(R2), then:

γ(cell21) = 4 or γ(cell24) = 4, (3.13)

and since 4 ∈ Γ(R4), we have:

γ(cell41) = 4 or γ(cell44) = 4. (3.14)

The interesting thing is that (3.13) and (3.14) imply the following two

“orthogonal” conditions (3.15) and (3.16):

γ(cell21) = 4 or γ(cell41) = 4, (3.15)

because otherwise γ(cell21) 6= 4 and γ(cell41) 6= 4 give γ(cell44) = 4 by

(3.14) and γ(cell24) = 4 by (3.13), which is a contradiction, since they are



3. Pruning sections of Solveku 98

in column C4. Additionally, we have the following.

γ(cell24) = 4 or γ(cell44) = 4, (3.16)

because otherwise γ(cell24) 6= 4 and γ(cell44) 6= 4 give γ(cell41) = 4 by

(3.14) and γ(cell21) = 4 by (3.13), which is a contradiction, since they are

in column C1.

Therefore, thanks to (3.15) and (3.16) we can remove 4 from the available

sets of all cells in C1 and C4, except those in R2,R4. As highlighted in

Figure 3.10.

0 1 2 3 4 5 6 7 8

0
2 2

3 8
2 2

5 1  
4 6 4 4 6 4 4 6  
7 7 9 9 9  

1
2 2

8 7
1 2 1 2

9 3  
4 5 6 4 5 4 6 4 4 6  

 
2 1 3 5 7 2 8  

4 6 4 6  
9 9 9  

3
3

2
1 3 1 3

8 4 9  
5 6 5 5 6  

7 7 7 7 7  
4 8

3

1 9
3

6 2  
4 5 4 5 5  
7 7 7 7  

5
2 2

5 1 6 3  
4 4 4 4  
7 7 9 7 9 7 8 7 8   

6 9 6 4 1
2 2

3 8  
 5 5  
7 7 7  

7 3 8 2 6 4 1  
5 5  

7 9 7 9 7  
8 1 4

3 3

6 9 2  
5 5 5  

7 7 7 8 7 8  

Figure 3.10: Example of an orthogonal pair.



3. Pruning sections of Solveku 99

We are going to generalize the technique used for the pair of rows and

columns in the previous example to m rows and columns for m ∈ {2, . . . , n}.
Since this technique focuses only on rows and columns, we are going to

formalize the relationship between rows and columns with the concept of

orthogonality.

Definition 3.3.2. Two brackets S1,S2 of a grid G are defined as orthog-

onal if |S1 ∩ S2| = 1. And we define an orthogonal intersection as the

only element cell = S1 ⊥ S2 ∈ S1 ∩ S2.

It is clear that a pair of brackets is only orthogonal if one of them is a

row and the other is a column. The next definition introduces a function

that, for a specific bracket and value, returns all orthogonal brackets that

contain the value in their available set. This function will be useful for the

definition of the new type of subset that is the protagonist of this stage.

Definition 3.3.3. For a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0), and a

given bracket S, and value ω ∈ Ω. we define the orthogonal intersection

function Λk : P(G)× Ω→ P(G) as follows:

Λk(S, ω) = {T : ω ∈ ASk(cell) and |S ∩ T| = 1 with cell = S ⊥ T} ,

where every T is a bracket orthogonal to S.

It should be clear that if S is a row, then Λk(S, ω) is a set of columns

and if S is a column, then Λk(S, ω) is a set of rows. Let us illustrate the

orthogonal intersection function using the setting of the last example.

Example 3.3.4. For the (Fk, γk,ASk) in Figure 3.10, we have the following

equations:

Λ(R2, 4) = {C1,C4} and Λ(R4, 4) = {C1,C4}



3. Pruning sections of Solveku 100

Finally, we are going to formalize and generalize the concept illustrated

in Example 3.3.1 by observing that ω = 4 appears only twice in rows 2 and

4, and additionally these appearances are in the same two columns 1 and

4. Note that we cannot start the arguments with columns 1 and 4 because

there are more than two rows that contain the candidate 4. We will see in

the next definition, that we refer to this case as a row-sourced orthogonal

subset ({(R2,R4)} , {C1,C4} , 4).

Definition 3.3.5. For a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0), and

m ≤ n we find that (R = {Ri1 , . . . ,Rim} ,C = {Cj1 , . . . ,Cjm} , ω) is an

orthogonal subset if one of the following conditions is met:

• If for every R ∈ R, we get that Λk(R, ω) ⊆ C, then the subset is

row-sourced .

• If for every C ∈ C, we get that Λk(C, ω) ⊆ R, then the subset is

column-sourced .

The set of brackets that is not the source is called orthogonal target .

Let us show a couple of examples, one for a row-sourced orthogonal

subset, and one for column-sourced one.

Example 3.3.6. Let (Fk, γk,ASk) be the setting in Figure 3.11. We have

that (R = {R1,R2,R3} ,C = {C0,C4,C6} , 8) is a column-sourced orthogo-

nal subset.

Clearly we have that |R| = |C| = 3, so m = 3. Now, let us show it is

indeed column-sourced:

Λk(C0, 8) = {R1,R2,R3} ⊆ R ,

Λk(C4, 8) = {R1,R2,R3} ⊆ R ,

Λk(C6, 8) = {R1,R2,R3} ⊆ R .



3. Pruning sections of Solveku 101

Therefore, we can conclude that (R = {R1,R2,R3} ,C = {C0,C4,C6} , 8) is

a column-sourced orthogonal subset. It is not row-sourced, because in at

least one row there are more than 3 columns containing the candidate 8.

0 1 2 3 4 5 6 7 8

0 5 2 9 4 1 7 3  
6 6  

8 8  
1

1

6 3
1 1

2  
4 4 5 4 5  
7 8 8 9 7 8 9 8 8 9  

2
1

1 1
1 1  

4 4 5 6 5 6 4  
7 8 8 7 8 9 8 9 8 9  

3 5 2 3
1 1

7 6  
4 4  

8 8 9 8 8 9  
4 6 3 7

1

5
1

2
1 1  

4 4 4  
9 8 8 9 8 9  

5 1 9 6 2 7 5 3  
4 4  

8 8  
6 3

1 1

6 9 4 2
1  

5 5  
7 8 8 7 8  

7 2
1

8 3
1

6
1 1  

4 4 5 5  
7 9 7 9  

8 9 6
1

7 4 2 3
1

5  
 

8 8  

Figure 3.11: Example of a column-sourced orthogonal subset.

Example 3.3.7. Let (Fk, γk,ASk) be the setting in Figure 3.12. We see that

(R = {R0,R3,R5,R8} ,C = {C0,C4,C7,C8} , 2) is a row-sourced orthogonal

subset.

Clearly we have that |R| = |C| = 4, so m = 4. Now, let us show that it



3. Pruning sections of Solveku 102

is indeed row-sourced:

Λk(R0, 2) = {C0,C7,C8} ⊆ C ,

Λk(R3, 2) = {C4,C8} ⊆ C ,

Λk(R5, 2) = {C4,C7,C8} ⊆ C ,

Λk(R8, 2) = {C0,C7,C8} ⊆ C .

Therefore, we can conclude that (R,C, 2) is a row-sourced orthogonal sub-

set.

0 1 2 3 4 5 6 7 8

0
2

1 7 5 3 8
2 2  

4 4 6 4 6 6  
9 9 9 9  

1
3

5
2 3 1 2 1 2 2 3 2

7  
4 4 4 4 6 6 4 6  

8 9 8 9 9  
2 7

3 3

8 9
2

1
2 2 3  

4 6 4 4 6 4 5 6 5 6  
 

3
3 3 3

6
2 3

1 5 7
2  

4 4 4  
8 9 8 9 8 9 8  

4 6 2 5 4 7 8 9 3 1  
 
 

5
3

1 7 9
2 3

5 4
2 2  

6 6  
8 8 8  

6
1 3 2 3 1

6 7
2 3 2

4  
5 5  

8 9 8 9 8 9  
7

3

7
3 2 2 3

1
3  

4 5 4 5 4 4 6 5 6  
8 9 8 9 8 8 9  

8
1 2

6 3
1

9 7
2 2

4 5 4 4 5 5  
8 8 8 8 8  

Figure 3.12: Example of row-sourced orthogonal subset.

Now, the pruning that takes place when an orthogonal subset is found is



3. Pruning sections of Solveku 103

described below. The formal definition of this pruning will be done in the

sudoku theory section, as was done for every stage.

For a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0) and an orthogonal subset

(R,C, ω), orthogonal pruning consists of deleting ω from the available

sets of all the cells in brackets in the target, except the ones that belong to

a bracket in the source.

Note that a subset can be row-sourced and column-sourced at the same

time. If that is the case, then the orthogonal pruning will do nothing since

we will have the properties: For every R ∈ R, Λk(R) ⊆ C and for every C ∈
C, Λ(C) ⊆ R. Therefore, there are no cells with candidate ω to be pruned.

Let us show an example of the way the orthogonal subset pruning is

applied. We will use the same settings as we showed in Example 3.3.6 and

3.3.7.

Example 3.3.8. For the setting in Figure 3.13 and (R = {R1,R2,R3} ,C =

{C0,C4,C6} , 8) a column-sourced orthogonal subset. The value 8 should

be pruned from the following cells:

cell ∈ R1 \ (C0 ∪ C4 ∪ C6),

cell ∈ R2 \ (C0 ∪ C4 ∪ C6),

cell ∈ R3 \ (C0 ∪ C4 ∪ C6).

In this specific case the cells in those sets that have 8 in their available sets

are the following: cell11, cell21, cell35, cell17, cell28. Therefore, those are the

cells that are pruned.



3. Pruning sections of Solveku 104

0 1 2 3 4 5 6 7 8

0 5 2 9 4 1 7 3  
6 6  

8 8  
1

1

6 3
1 1

2  
4 4 5 4 5  
7 8 8 9 7 8 9 8 8 9  

2
1

1 1
1 1  

4 4 5 6 5 6 4  
7 8 8 7 8 9 8 9 8 9  

3 5 2 3
1 1

7 6  
4 4  

8 8 9 8 8 9  
4 6 3 7

1

5
1

2
1 1  

4 4 4  
9 8 8 9 8 9  

5 1 9 6 2 7 5 3  
4 4  

8 8  
6 3

1 1

6 9 4 2
1  

5 5  
7 8 8 7 8  

7 2
1

8 3
1

6
1 1  

4 4 5 5  
7 9 7 9  

8 9 6
1

7 4 2 3
1

5  
 

8 8  

Figure 3.13: Example of a column-sourced orthogonal prune.

Example 3.3.9. Given the setting in Figure 3.14, and the row-sourced or-

thogonal subset (R = {R0,R3,R5,R8} ,C = {C0,C4,C7,C8} , 2), the value

2 can be pruned from the following cells:

cell ∈ (C0 ∪ C4 ∪ C7 ∪ C8) \ (R0 ∪ R4 ∪ R6 ∪ R8).

In this specific case, the cells in these sets that have 2 in their available sets

are the following: cell17, cell27, cell28, cell67. Therefore, these are the cells

that are pruned.



3. Pruning sections of Solveku 105

0 1 2 3 4 5 6 7 8

0
2

1 7 5 3 8
2 2  

4 4 6 4 6 6  
9 9 9 9  

1
3

5
2 3 1 2 1 2 2 3 2

7  
4 4 4 4 6 6 4 6  

8 9 8 9 9  
2 7

3 3

8 9
2

1
2 2 3  

4 6 4 4 6 4 5 6 5 6  
 

3
3 3 3

6
2 3

1 5 7
2  

4 4 4  
8 9 8 9 8 9 8  

4 6 2 5 4 7 8 9 3 1  
 
 

5
3

1 7 9
2 3

5 4
2 2  

6 6  
8 8 8  

6
1 3 2 3 1

6 7
2 3 2

4  
5 5  

8 9 8 9 8 9  
7

3

7
3 2 2 3

1
3  

4 5 4 5 4 4 6 5 6  
8 9 8 9 8 8 9  

8
1 2

6 3
1

9 7
2 2

4 5 4 4 5 5  
8 8 8 8 8  

Figure 3.14: Example of a row-sourced orthogonal prune.

3.3.1 Sudoku Theory

First, we provide an important property of the orthogonal intersection func-

tion that will be useful in revealing a complementary relationship between

row-sourced and column-sourced orthogonal subsets.

Lemma 3.3.10. For a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0), the or-

thogonal intersection function is commutative, that is, for any brackets

S1,S2 the following property holds:

S2 ∈ Λk(S1, ω) if and only if S1 ∈ Λk(S2, ω).



3. Pruning sections of Solveku 106

Proof. Since S1 ∩ S2 = S2 ∩ S1, we then have S1 ⊥ S2 = S2 ⊥ S2, and

|S1 ∩ S2| = 1 if and only if |S2 ∩ S1| = 1.

Now, S2 ∈ Λk(S1, ω) if and only if ω ∈ ASk(S2 ⊥ S1), if and only if ω ∈
ASk(S2 ⊥ S1), if and only if S1 ∈ Λk(S2, ω).

To this end, we are going to state a theorem that establishes a comple-

mentarity relationship between row and column-sourced subsets, just like

we did for naked and hidden subsets. We will prove that (R,C, ω) is a row-

sourced orthogonal subset if and only if the remaining rows and columns

form a column-sourced orthogonal subset for the same value ω.

Theorem 3.3.11. For a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0), let R

be the set of all rows and C be the set of all columns of G. Then (R,C, ω) is

a row-sourced orthogonal subset if and only if (R \R, C \C, ω) is a column-

sourced orthogonal subset.

These subsets are called complementary subsets.

Proof. First, we assume that (R,C, ω) is a row-sourced orthogonal subset,

and we are going to prove that (R \ R, C \ C, ω) is a column-sourced or-

thogonal subset. Since (R,C, ω) is a row-sourced orthogonal subset, we can

define m in the following way:

m = |R| = |C|. (3.17)

We need to check two conditions:

C1, |R \R| = |C \ C| ≤ n:

We know that any grid has n rows and n columns, therefore |R| = n

and |C| = n. We now have |R| = |C|, which implies |R| − m =

|C| −m. Using (3.17) we get |R| − |R| = |C| − |C|. Finally, since

R ⊆ R and C ⊆ C we can conclude that |R \R| = |C \ C| ≤ n.



3. Pruning sections of Solveku 107

C2, (R \R, C \ C, ω) is column-sourced:

Let us suppose that (R \R, C \C, ω) is not column-sourced. Then,

there exist a row R′ and a column C′ ∈ C\C such that R′ ∈ Λ(C′, ω)

and R′ /∈ (R \R). Since R is the set of all rows, we have R′ ∈ R
and R′ /∈ R \R, therefore R′ ∈ R.

Now, since we have R′ ∈ Λ(C′, ω), applying the Lemma 3.3.10 of

commutativity, page 105, we get C′ ∈ Λ(R′, ω).

But since (R,C, ω) is a row-sourced orthogonal, C′ ∈ Λ(R′, ω) im-

plies C′ ∈ C, which is a contradiction to the hypothesis C′ ∈ C \C.

Therefore, (R \R, C \C, ω) is a column-sourced orthogonal subset.

Now, we assume that (R \ R, C \ C, ω) is a column-sourced orthogonal

subset and prove that (R,C, ω) is a row-sourced orthogonal subset. Since

(R \R, C \ C, ω) is an orthogonal subset, we can define m as follows:

m = n− |R \R| = n− |C \ C|,

and it is clear that 0 ≤ m ≤ n. Again, we check two conditions:

C1, We have |R \ R| = |C \ C|. Now, since R ⊆ R and C ⊆ C, we

can conclude that |R| − |R| = |C| − |C|. Subsequently, we know

that any grid has n rows and n columns; therefore |R| = n and

|C| = n. Finally, since m = n − |R \ R| = n − |C \ C|, we have

m = n−(n−|R|) = n−(n−|C|), so we can conclude m = |R| = |C|.

C2, (R,C, ω) is row-sourced:

Let us suppose that (R,C, ω) is not row-sourced. Then, there exist

a column C′ and a row R′ ∈ R such that C′ ∈ Λ(R′, ω) and C′ /∈ C.

Since C is the set of all columns, we have C′ ∈ C and C′ ∈ C \ C.

Now, since we have C′ ∈ Λk(R′, ω), applying Lemma 3.3.10, page

105, we get R′ ∈ Λk(C′, ω).



3. Pruning sections of Solveku 108

Since (R \R, C \ C, ω) is a column-sourced orthogonal subset, and

R′ ∈ Λk(C′, ω) for C′ ∈ C \ C. This implies R′ ∈ R \ R, which

is a contradiction to hypothesis R′ ∈ R. Therefore, (R,C, ω) is a

row-sourced orthogonal subset.

Next, we formalize the process of orthogonal pruning. We define it for

both cases, row-sourced and column-sourced, and then we prove that no

solution is lost.

Given a setting (Fk, γk,ASk) and an orthogonal subset (R,C, ω), we define

the following sets of cells: RR =
⋃

R∈RR, and CC =
⋃

C∈CC.

Assuming (R,C, ω) is row-sourced, we define the function that performs

the orthogonal prune as follows:

(Fk+1, γk+1,ASk+1) = fR5((Fk, γk,ASk),R,C, ω)

= (Fk, γk, f3
R5(ASk, (R,C, ω)))

where for every cell ∈ G,

ASk+1(cell) = f3
R5(ASk, (R,C, ω))

∣∣
cell

=


ASk(cell) if cell ∈ G \ CC

ASk(cell) if cell ∈ CC ∩ RR

ASk(cell) \ {ω} if cell ∈ CC \ RR

We now state a lemma that will be used in the proof that shows no

solution is lost when applying a row-sourced orthogonal prune.

Lemma 3.3.12. For a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0), a row-

sourced orthogonal subset (R,C, ω), and a cell∗ such that γk(cell
∗) = ω.



3. Pruning sections of Solveku 109

Let , then:

C∗ ∈ C =⇒ R∗ ∈ R.

Where R∗ is the row of cell∗ and C∗ its column

Proof. Since (Fk, γk,ASk) is a setting, there exists a solution γ, such that

γk � γ. Let R = {Ri1 , . . . ,Rim}, then, since each row is a bracket, each

row in R should have a cell such that γ(cell) = ω. So there exist j1, . . . , jm

such that

γ(celli1j1) = ω, . . . , γ(cellim,jm) = ω.

Since γ is a solution, it is clear that:

j1, j2, . . . jm are all different, (3.18)

otherwise, two different cells in the same column have the same value ω.

Furthermore, since ASk is a valid available set function, we obtain

γ(celli1j1) ∈ ASk(celli1j1), . . . , γ(cellimjm) ∈ ASk(cellimjm), or equivalently

ω ∈ ASk(celli1j1), . . . , ω ∈ ASk(cellim,jm). (3.19)

Now, since (R,C, ω) is row-sourced we have that Λk(R, ω) ⊆ C for every

R ∈ R. Therefore, using (3.19) we have that Cj1 ∈ Λk(Ri1 , ω) ⊆ C, . . . ,Cjm ∈
Λk(Rim , ω) ⊆ C, this implies, {Cj1 , . . .Cjm} ⊆ C. Using (3.18) and that

|C| = m, we get:

{Cj1 , . . .Cjm} = C. (3.20)

Because, by definition of orthogonal subset we know that |C| = m. Finally,

by hypothesis C∗ ∈ C, and without loss of generality C∗ = Cj1 . Also, since

there can only be one cell in each column with a value ω, and γ(cell∗) =

γ(celli1j1), we get that cell∗ = celli1j1 . That is, R∗ = Ri1 , therefore, R∗ ∈
R.



3. Pruning sections of Solveku 110

Now, we prove that no solution is lost when applying a row-sourced

orthogonal prune. We will prove this by showing that the result of doing

an orthogonal prune to a setting is a setting. Of course, for the proof of

the following theorem we will take advantage of Lemma 3.3.12.

Theorem 3.3.13. For a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0), and a

row-sourced orthogonal subset (R,C, ω), we have that:

(Fk+1, γk+1,ASk+1) = fR5((Fk, γk,ASk),R,C, ω) is a setting

Proof. Since (Fk, γk,ASk) is a setting and Fk+1 = Fk and γk+1 = γk it is

clear that F0 ⊆ Fk+1 and γk+1 � γ0. Therefore, we only have to prove that

ASk+1 is a valid available set function. As usual, let us suppose it is not,

we will try to reach a contradiction. Then, there exists a cell′ ∈ G and a

solution γ such that γ(cell′) /∈ ASk+1(cell′). Since ASk is a valid available

set function, we have that γ(cell′) ∈ ASk(cell
′), therefore we can conclude

γ(cell′) ∈ ASk(cell
′) \ASk+1(cell′) (3.21)

Case 1, cell′ ∈ G \ CC or cell′ ∈ CC ∩ RR:

Then, by definition of f3
R5, we know that ASk+1(cell′) = ASk(cell

′),

then applying (3.21) we have that γ(cell′) ∈ ∅, which is a contra-

diction.

Case 2, cell′ ∈ CC \ RR:

By definition f3
R5, and applying (3.21) we have that γ(cell′) ∈

ASk \ (ASk \ {ω}). If ω /∈ ASk(cell
′), this means that γ(cell′) ∈ ∅

which is a contradiction, then, assuming ω ∈ ASk(cell
′) we get:

γ(cell′) = ω. (3.22)

Let R′ be the row of cell′ and C′ its column. By hypothesis of Case

2, cell′ ∈ CC which implies that C′ ∈ C, then we can apply Lemma



3. Pruning sections of Solveku 111

3.3.12, to cell′. We then have that R′ ∈ R, that is cell′ ∈ RR which

is a contradiction to the Case 2.

In conclusion, by reducto ad absurdum, ASk+1 is a valid available set func-

tion, and (Fk+1, γk+1,ASk+1) is a setting.

Now, let us formally define the column-sourced orthogonal prune. Sup-

pose that (R′,C′, ω) is column-sourced. We define the function that per-

forms the column orthogonal prune as follows: Let RR′ =
⋃

R∈R′ R, and

CC′ =
⋃

C∈C′ C.

(Fk+1, γk+1,ASk+1) = fC5((Fk, γk,ASk),R
′,C′, ω)

= (Fk, γk, f3
C5(ASk, (R

′,C′, ω)))

where, for every cell ∈ G,

ASk+1(cell) = f3
C5(ASk, (R

′,C′, ω))
∣∣
cell

=


ASk(cell) if cell ∈ G \ RR′

ASk(cell) if cell ∈ RR′ ∩ CC′

ASk(cell) \ {ω} if cell ∈ RR′ \ CC′

Now, we are going to prove that the prune done by a column-sourced or-

thogonal subset is the same as the one done by its complimentary row-

sourced orthogonal subset, see Theorem 3.3.11. This will allow us to even-

tually prove that a column-sourced orthogonal prune does not loose solu-

tions.

Theorem 3.3.14. For a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0). Let

(R,C, ω) be a row-sourced orthogonal subset, and (R′,C′, ω) be its comple-

mentary column-sourced orthogonal subset. Then,

fR5((Fk, γk,ASk),R,C, ω) = fC5((Fk, γk,ASk),R
′,C′, ω).



3. Pruning sections of Solveku 112

Proof. Let (FR, γR,ASR) = fR5((Fk, γk,ASk),R,C, ω), and (FC , γC ,ASC) =

fC5((Fk, γk,ASk),R
′,C′, ω). We have FR = Fk and FC = Fk, then FR = FC .

Also, γR = γk and γC = γk, so γR = γC . The only thing left to prove is

that ASR = ASC .

Since (R,C, ω) and (R′,C′, ω) are complementary we have that R =

R ∪ R′ (all rows) and R ∩ R′ = ∅. Similarly, we have C = C ∪ C′ (all

columns) and C ∩ C′ = ∅.

Now, for rows: RR =
⋃

R∈RR and RR′ =
⋃

R∈R′ R, and for columns:

CC =
⋃

C∈CC, and CC′ =
⋃

C∈C′ C, we can conclude the following two set

equalities:

G = RR ∪ RR′ and RR ∩ RR′ = ∅, (3.23)

G = CC ∪ CC′ and CC ∩ CC′ = ∅. (3.24)

Next, we prove that ASR = ASC by checking that ASR(cell) = ASC(cell) for

every cell ∈ G. Please refer to the definitions of the row-sourced orthogonal

prune fR5 on page 108, and column-sourced orthogonal prune fC5 on page

111.

We can observe that in the row-sourced prune the only cells that have

its available set affected are the ones in CC \ RR, meanwhile the affected

cells in the column-sourced prune are the ones in RR′ \CC′. And these set

of cells are affected in the same way, by removing {ω}, therefore, we just

have to prove that CC \ RR = RR′ \ CC′. Observe that CC \ RR is equal

to (G \CC′) \RR by (3.24), which is equal to (G \CC′) \ (G \RR′). Now,

since RR′ ⊆ G, we have that (G \CC′) \ (G \RR′) = (G \CC′)∩RR′ which

is equal to (G ∩ RR′) \ CC′, which of course is equal to RR′ \ CC′.

Therefore, we can conclude that

fR5((Fk, γk,ASk),R,C, ω) = fC5((Fk, γk,ASk),R
′,C′, ω)



3. Pruning sections of Solveku 113

because they remove ω from the available sets of the same cells and leave

the other cells unaffected.

Now, we prove that the column-source orthogonal prune does not loose

solutions, again we prove this by showing that when a column-source or-

thogonal prune is applied to a setting, the result is a setting, as well.

Corollary 3.3.15. Given a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0), and

a column-sourced orthogonal subset (R′,C′, ω), the result of fC5 is a setting.

Proof. By Theorem 3.3.11, page 106 for (R′,C′, ω) there exists a row-

sourced complementary orthogonal subset (R,C, ω). Then, by Theorem

3.3.14, the pruning of the complementary subsets is the same, that is

fR5((Fk, γk,ASk),R,C, ω) = fC5((Fk, γk,ASk),R
′,C′, ω). Finally, by The-

orem 3.3.13, 110 we have that fR5((Fk, γk,ASk),R,C, ω) is a setting. So,

we can conclude that fC5((Fk, γk,ASk),R
′,C′, ω) is a setting.

3.3.2 Implementation

For implementing this stage we use the same strategy that we used for stage

four and prove that an orthogonal subset is a subcover of a specific type of

cover. Then, we define the covers and look for subcovers. Again, we divide

the implementation into theory and code.

Theory

We recall the Definition 3.3.3 of the orthogonal intersection function, page

99. For a fixed ω ∈ Ω we denote Λk(S, ω) by Λωk (S) where S is a bracket.

Before we show that orthogonal subsets are subcovers we will use the

same concept we used in stage four for restricting functions.



3. Pruning sections of Solveku 114

We recall the Definition 3.2.12 of a set cover, page 84. Again, we use the

symbols R = {R0, . . . ,Rn−1} and C = {C0, . . . ,Cn−1} to denote all rows

and columns, respectively. For a setting (Fk, γk,ASk) and a fixed a value

ω, we have that for any row R, Λωk (R) ⊆ C, and similarly for any column

C, Λωk (C) ⊆ R. Then, we can conclude the following lemma.

Lemma 3.3.16. For a setting (Fk, γk,ASk), and a value ω, we have that

(R,C,Λωk(R)) and (C,R,Λωk(C)) are covers.

Now, we prove that an orthogonal subset is a subcover of the covers

mentioned above.

Theorem 3.3.17. For a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0), we have

that (R,C, ω) is a row-sourced orthogonal subset if and only if (R,C,Λωk(R))

is a subcover of (R,C,Λωk(R)).

Proof. By Corollary 3.2.14 we know that Λωk(R) = Λωk(R)(R) so the subcover

function matches with the one in the definition of subcovers. First, we

assume (R,C, ω) is a row-sourced orthogonal subset, and we prove that

(R,C,Λωk(R)) is a subcover of (R,C,Λωk(R)). By Definition 3.2.16 of subcov-

ers, page 85, we have to verify two conditions:

C1, R ⊆ R, C ⊆ C :

By definition R is made up of rows, and C is made up of columns,

and we have R ⊆ R, C ⊆ C.

C2, (R,C,Λωk(R)) is a cover:

By definition of an orthogonal subset |R| = |C| and since it is row-

sourced we get Λωk(R)(R) ⊆ C for every R ∈ R, which proves the

second condition and concludes the first part.

Now, we assume that (R,C,Λωk(R)) is a subcover of (R,C,Λωk(R)) and we

prove that (R,C, ω) is an orthogonal subset:



3. Pruning sections of Solveku 115

C1, |R| = |C|:
By definition, every subcover is also a cover, then, we have that

|R| = |C|, and by definition of subcovers, R ⊆ R and C ⊆ C.

C2, (R,C, ω) is row-sourced:

We prove that it (R,C, ω) is row-sourced, that is, for all R ∈ R

Λωk(R)(R) ⊆ C. This holds because that is the exact property of the

second condition of the Definition 3.2.12 of covers, page 84.

Corollary 3.3.18. Given a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0),

the tuple (R,C, ω) is a column-sourced orthogonal subset if and only if

(C,R,Λωk(C)) is a subcover of (C,R,Λωk(C)).

The proof of Theorem 3.3.17 gives this result.

Now, the concept of isolation Definition 3.2.21, will be useful for orthog-

onal subsets as well. For instance, we have that a subcover of (R,C,Λωk(R))

that represents a row-sourced orthogonal subset (R,C,Λωk(R)) is isolated, if

(C,R,Λωk(C)) is a subcover of (C,R,Λωk(C)), which implies we do not have

any cells to prune. This happens when ω is not in the available set of any

of the cells that could be pruned. We can conclude that if the subcover

that represents an orthogonal subset is isolated, then the orthogonal subset

is row-sourced and column-sourced at the same time, therefore, there are

no cells to be pruned.

Code

First of all, we add the new covers (R,C,Λωk(R)) and (C,R,Λωk(C)) as Cover

instances as attributes to the Bracket class, for each ω ∈ Ω and for each row

and column. Then, we will take advantage of the method find subset of

the Cover class that returns a non-isolated subcover, whose implementation



3. Pruning sections of Solveku 116

we discussed in stage 4, where its pseudo code can be found. Also, we will

add a method to the SudokuGrid class to check if any subcover has been

found in the new cover attributes.

First, we add the covers to the bracket class, the function

orthogonal bracket function is the implementation of the orthogonal

intersection function Λ as defined in Definition 3.3.3, page 99. The value

None is only returned when there exists a cell in the given bracket such

that cell.value == omega.

Then, the function define orthogonal covers defines all the orthogo-

nal covers (R,C,Λωk(R)) and (C,R,Λωk(C)), using the

orthogonal bracket function, for every ω ∈ Ω a row-sourced and a

column-sourced cover is made.

The attribute orthogonal row cover keeps track of covers with rows

as domain and columns as counter domain, while orthogonal col cover

handles covers with columns as domain and rows as counter domain.

1 c l a s s Bracket :

2 ””” . . . ”””

3 de f o r thogona l b ra cke t f unc t i on ( s e l f , bracket , omega ) :

4 r e s = { c e l l i n d e x f o r c e l l i n d e x in SudokuGrid . I i f bracket [ c e l l i n d e x ] .

av s e t i s not None and omega in bracket [ c e l l i n d e x ] . av s e t }
5 return r e s i f r e s e l s e None

6

7 de f d e f i n e o r t hogona l c ov e r s ( s e l f ) :

8 s e l f . o r thogona l row cover = {
9 omega : Cover ( SudokuGrid . I , [ s e l f . o r thogona l b r a cke t f unc t i on ( bracket

, omega ) f o r bracket in s e l f . row ] )

10 f o r omega in SudokuGrid .Omega}
11 s e l f . o r t hogona l c o l c ov e r = {
12 omega : Cover ( SudokuGrid . I , [ s e l f . o r thogona l b r a cke t f unc t i on ( bracket

, omega ) f o r bracket in s e l f . c o l ] )

13 f o r omega in SudokuGrid .Omega}

Now, in the SudokuGrid class the covers are defined for

SudokuGrid.brackets using the method

SudokuGrid.define orthogonal covers().

The method find orthogonal subset, receives a parameter



3. Pruning sections of Solveku 117

source covers that is an array of either row or column-sourced potential

orthogonal subsets, and the parameter target brackets is an array with

the brackets either rows or columns, the opposite type than the source

of the subset. The method looks for a subcover, and if it finds one, it

uses the parameter target brackets to find the brackets where the cells

should be pruned. Finally the method prune orthogonal is called, it goes

through the cells in the target brackets, except for the ones that belong to

the intersection of the subset. That is why the cells in the source indexes

are skipped.

The stage five function just calls find orthogonal subset for both

types of covers, row and column-sourced and the specific size of the subcover

we are looking for, that is, m.

1 c l a s s SudokuGrid :

2 ””” . . . ”””

3 de f d e f i n e o r t hogona l c ov e r s ( s e l f ) :

4 s e l f . b racket s . d e f i n e o r t hogona l c ov e r s ( )

5

6 de f prune orthogona l ( s e l f , t a r g e t b ra cke t s , source indexes , omega ) :

7 f o r bracket in t a r g e t b r a ck e t s :

8 f o r index in SudokuGrid . I :

9 i f index not in sou r c e i ndexe s :

10 bracket [ index ] . av set remove ( omega )

11

12 de f f i nd o r thogona l s ub s e t ( s e l f , s ource cove r s , t a r g e t b ra cke t s , m) :

13 f o r omega , cover in s ou r c e cove r s . i tems ( ) :

14 subcover = cover . f i nd subcove r (m)

15 i f subcover i s not None :

16 source indexes , t a r g e t i nd ex e s = subcover

17 t a r g e t b r a ck e t s = [ t a r g e t b r a ck e t s [ index ] f o r index in

t a r g e t i nd ex e s ]

18 s e l f . prune orthogona l ( t a r g e t b ra cke t s , source indexes , omega )

19

20 de f s t a g e f i v e ( s e l f , m) :

21 s e l f . f i nd o r thogona l s ub s e t ( s e l f . b racket s . or thogona l row cover , s e l f .

b racket s . co l , m)

22 s e l f . f i nd o r thogona l s ub s e t ( s e l f . b racket s . o r thogona l co l c ove r , s e l f .

b racket s . row ,m)

For the time complexity of stage five we recall from stage four, that

the time complexity of the algorithm Find-subcover is O(mnm+3).

Stage five calls find orthogonal subset O(mnm+3) on row-sourced cov-

ers and column-sourced covers. We have one row-sourced and one column-



3. Pruning sections of Solveku 118

sourced cover for each ω ∈ Ω, that is, 2n covers in total. Therefore, we have

that the total complexity of stage 5 isO(stage five) = O(2n)O(mnm+3)) =

O(mnm+4).



M 119

Chapter 4

The Solveku Algorithm

By now, we have described all stages that make up our Solveku algorithm.

Now, we will merge them and describe how they work together. If all the

combined stages are not able to find a solution, we are going to complement

them with a backtracking technique.

We first describe how the backtracking works when the stages are not

able to find a solution. Then, we describe how we put all the stages together

along with the backtracking to form the complete Solveku Algorithm. We

will also have an implementation subsection, but instead of having the code

for the whole algorithm, we will simply describe some of the most important

details about the implementation of the algorithm as a whole. If the reader

skipped the implementation part for all stages, it would not make sense to

go through this implementation subsection. Additionally, implementation

details are not required to understand the overall logic of the algorithm.

We created a website where our algorithm can be tested by introducing

any sudoku puzzle https://www.solveku.com. The puzzle will be solved

using Solveku and the output includes an step by step guide of the solution.

https://www.solveku.com


4. The Solveku Algorithm 120

4.1 Backtracking

4.1.1 Plain backtracking

If the stages of the algorithms are able to find a solution, then that solution

must be unique because we have proved for every stage that no solutions

are lost with every step done by a stage. Subsequently, every time we reach

a setting (Fk, γk,ASk) by applying a stage, we know for sure that all the

solutions to the puzzle (n,F0, γ0) are exactly the same as all the solutions of

this setting. We may have more than one solution because we do not know

that the puzzle is well defined, which means that there can be multiple

solutions for (n,F0, γ0), which implies multiple solutions for (Fk, γk,ASk).

But if, after applying all stages, we are stuck in (Fk, γk,ASk), since we know

that no solutions have been lost, we need a technique to proceed and find

a solution.

Here, backtracking comes to the rescue. By backtracking, we mean choos-

ing one cell and one candidate of this cell, assuming that it is the value of

the cell, and proceeding with the stages. Notice that by arbitrarily placing

a value in a cell, we are reducing available sets, from the cell itself and pos-

sibly from its neighbors, with no guarantee that the new state is a setting.

That is, when we reduce the available sets of cells by backtracking, we may

be losing solutions and, in the worst case, we might be losing all the pos-

sible solutions, reaching a setting of the puzzle that has no solutions. We

will come back to this problem after describing the backtracking process.

Backtracking is a brute-force technique that easily (but not quickly) finds

every solution of a puzzle by trying every possible combination of cell and

candidate for every cell that does not have an assigned value. However,

this is not efficient or even feasible in some scenarios. Nevertheless, in this

work, we backtrack with the objective of finding just one solution because

we assume that we are working with well-defined puzzles.



4. The Solveku Algorithm 121

Searching for just one solution is much more interesting from an algo-

rithmic point of view. If we assume that we are given a well-defined puzzle,

then reaching one solution will be enough, since the solution is unique.

Now, the interesting question is which cell and candidate should we choose

to backtrack so that we can reach the solution as quickly as possible. Fo-

cusing on well-defined puzzles does not limit the algorithm; it just means

that it will focus on finding one solution even if many are available. That

is the question that we will address in the next subsection.

4.1.2 Informed backtracking

We are backtracking to find one solution. Therefore, we would like to choose

a candidate that will take us to a solution as fast as possible. The best way

to do so is to assign to a cell the candidate which will eventually be its

value. Of course, we do not know what value the cell is going to take, so we

really have no way to assert the best cell and candidate for backtracking.

As we discussed earlier, we may choose a wrong candidate and cell to

backtrack, and end in an unsolvable puzzle. However, this is not always

a bad scenario, because if we assign arbitrarily a value to a cell and then

conclude that the puzzle becomes unsolvable, we know for sure that that

cell cannot take that specific value, and we can remove it from the cell’s

available set. That is, we will rather realize quickly that we misplaced a

candidate than keep going and keep wasting resources with an unsolvable

puzzle.

When choosing a candidate and a cell to backtrack, we will choose the

one that affects the most cells possible by reducing their available sets. In

this way, we expect to either quickly reach a solution or realize that the

new puzzle is unsolvable.

Here, we have the heuristics in the picture. A heuristic is an approach



4. The Solveku Algorithm 122

that employs a practical method that is not guaranteed to be optimal, but

is effective in many cases. We are in the middle of a search problem, since

we are looking for a solution. We will use a heuristic known as the Minimum

Remaining Values (MRV) heuristic [Mal20]. The idea of this heuristic is

that by making an assignment we will reduce the search space as much as

possible, which will eventually mean that we are reducing the number of

backtracks that we might need to do later.

In this context, our search space is the set of all the candidates for all cells

that do not have an assigned value. We can only backtrack by assigning

candidates to one cell. Hence, if one backtrack allows us to delete a lot

of candidates from the grid, then we are preventing ourselves from more

potential future backtracks.

Once we do a backtrack, we apply all stages to see if we can find the

solution. In our algorithm, assigning a cell to a value has a domino effect,

because when we assign a value to a cell we delete that value from the

available set of all the neighbors of that cell. That is, when we assign a value

to a cell, we will most likely be affecting it and many of its neighbors, we

say many and not all, because some neighbors might not have the assigned

value in their available sets.

We tried one backtrack variation that focuses on brackets that are al-

most complete, and starts by finishing those. This heuristic turned out to

have poor performance in some cases, especially when the available sets

of the cells that did not have a value in the chosen bracket contain ev-

ery valid candidate. By valid we mean the candidates remaining in the

chosen bracket. It makes sense that MRV has a better performance, since

it chooses a cell based on every related factor that determines that cell’s

available set, instead of focusing only on one bracket and loosing generality.

We also tried a more conservative approach, choosing candidates that do

not affect many cells, with the hypothesis that the chance of doing a failed



4. The Solveku Algorithm 123

backtrack was less; the results for this approach were terrible, almost five

times the number of backtracks than our MRV heuristic. However, this

conservative heuristic is useful with not well-defined puzzles, that is, it is

useful when looking for multiple solutions.

4.2 Sudoku theory

Technically, we are going to take a slightly different approach from the plain

MRV heuristic. By reducing the available set of a cell that has only two

candidates, we are effectively assigning a value to it and triggering all the

processes just described. Therefore, we prefer to prune a cell with only two

candidates than a cell with more candidates because that means that by

pruning it, we are triggering a chain reaction.

Furthermore, in general, we rather choose a cell that has as few candi-

dates as possible, it does not necessarily have to be just two candidates.

That is, for every m1 < m2 ≤ n we prefer to prune a cell with m1 candi-

dates than a cell with m2 candidates. Because the cell with m1 is closer to

having a value assigned.

As we discussed earlier, we have to choose one cell and one candidate ω to

backtrack on. To make this choice in a deterministic way, we need to rank

each pair of (cell, ω) by some rating. We now introduce two definitions,

first, a rate that represents how many cells are affected by a backtrack, and

then a way to order these ratings. We will rate every available candidate

for each cell in the grid that does not have an assigned value. Then we are

going to choose the candidate with the highest rate. Instead of rating with

a number, we will rate with a collection of numbers. Each number in the

rating represents how many cells are affected by the backtrack, grouped by

the number of total candidates of those cells. We later define an order of

these cells.



4. The Solveku Algorithm 124

Definition 4.2.1. For a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0), and

cell∗ ∈ G such that 2 ≤ |AS(cell∗)| and for every candidate ω ∈ ASk(cell
∗).

Let Acell∗ be the set of cells affected directly by a backtrack, which are

neighbors of cell∗ and cell∗ itself, that is

Acell∗ = N(cell∗) ∪ {cell∗} .

Now, let ri be the number of affected cells that have ω as a candidate and

whose available set size is equal to i. For i ∈ {2, . . . , n}, we define:

ri(cell
∗, ω) =

∣∣ {cell : cell ∈ Acell∗ , ω ∈ ASk(cell) and |ASk(cell)| = i}
∣∣.

Finally, we define backtrack rate function BR as a vector of values of

ri:

BR(cell, ω) = (r2(cell, ω), r3(cell, ω), . . . , rn(cell, ω)).

Note that since 2 ≤ |AS(cell∗)| then BR(cell∗, ω) 6= 0. Given that BR is

a vector of numbers, we have to define a way to compare different rates,

because we will backtrack with the cell and candidate pair that has the

highest rate.

Definition 4.2.2. For two different backtracking rates r = (r2, . . . , rn),

r′ = (r′2, . . . , r
′
n), we say that r < r′ if there exists an index l ∈ {2, . . . , n}

such that for every index i ∈ {2, l − 1} we have ri = r′i and rl < r′l.

In plain words, the definition only states that given two rates r and r′,

to determine which is smaller, we have to find the first entrance of the

vector that is different for the rates, the rate whose value at that entrance

is smaller is the smaller rate.

We want to choose the couple cell∗ and the candidate ω∗ that has the

largest BR. In other words, we are looking for a couple that has a rate r∗,

such that r∗ < r is not true for every other rate r in the grid.



4. The Solveku Algorithm 125

Now, we have to handle what happens when we backtrack with the wrong

candidate, which means that we chose to backtrack with a candidate in

a cell that was not its value. Suppose that we choose to backtrack with

(cell∗, ω∗), but then realize that, in fact, γ(cell∗) 6= ω∗, where γ is a solution

we are looking for. Although this is not the scenario we want, when it

happens, we are not left empty handed, because at least now we know for

a fact that γ(cell∗) 6= ω∗. This means that we can now remove ω∗ from

AS(cell∗). This can happen only during the backtrack, because we are no

longer certain that the result is a setting. Let us now formally define this

scenario.

Definition 4.2.3. Given a puzzle (n,F0, γ0), we define (F′k, γ′k,AS′k) as a

semi-setting , if the following conditions are met:

• F0 ⊆ F′k ⊆ G.

• γ′k : F′k → Ω.

• AS′k is a an available set function.

A semi-setting is a loose setting because it requires fewer conditions on

the available set function than the standard setting definition. The differ-

ence is that standard settings asks for a valid available set function, while

a semi-setting any available set function is permitted. It is clear that every

setting is a semi-setting. Recall that we proved that when applying any

of the stages(1-5) no solutions are lost. We now state a definition and a

lemma to generalize this result to semi-settings.

Definition 4.2.4. For a natural number r, we say that a (F′k, γ′k,AS′k) pre-

cedes another semi-setting (F′k+r, γ
′
k+r,AS′k+r) if (F′k+r, γ

′
k+r,AS′k+r) can be

reached from (F′k, γ′k,AS′k) by applying stages 1 to 5.

That is,

(F′k+i+1, γ
′
k+i+1,AS′k+i+1) = gi((F′k+i, γ

′
k+i,AS′k+i))



4. The Solveku Algorithm 126

where gi ∈ {f1, f2, f3, fN4, fH4, fR5, fC5} for i ∈ {0, . . . , r − 1}.

And now we state in the following lemma that no solutions are lost.

Lemma 4.2.5. For r a natural number and two semi-settings (F′k, γ′k,AS′k),

(F′k+r, γ
′
k+r,AS′k+r) such that (F′k, γ′k,AS′k) precedes (F′k+r, γ

′
k+r,AS′k+r). If

(F′k, γ′k,AS′k) is a setting, then (F′k+r, γ
′
k+r,AS′k+r) is a setting.

Proof. Since (F′k, γ′k,AS′k) is a setting and all stages preserve solutions, this

means that (F′k+1, γ
′
k+1,AS′k+1) is a setting. Applying the same property r

times, we can conclude that (F′k+r, γ
′
k+r,AS′k+r) is a setting.

Now we properly define the backtrack that will be used in our Solveku

Algorithm.

Definition 4.2.6. For a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0), we

define Solveku backtrack as follows. Let (cell∗, ω∗) be the best BR rated

pair. The Solveku backtrack returns a semi-setting (F′k+1, γ
′
k+1,AS′k+1),

where: F′k+1 = Fk ∪ {cell∗} and for every cell ∈ G:

γ′k+1(cell) =

γk(cell) if cell ∈ Fk

ω∗ if cell = cell∗

AS′k+1(cell) =

ASk(cell) if cell 6= cell∗

{ω∗} if cell = cell∗.

We place an apostrophe in the result of the backtrack because it is a semi-

setting, and we are unsure if it is a setting. We will next apply the stages

of Solveku to the semi-setting obtained by Definition 4.2.6, and analyze if

it is a setting or not.

Definition 4.2.7. Given a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0), let

the semi-setting (F′k+1, γ
′
k+1,AS′k+1) be the result of performing a Solveku



4. The Solveku Algorithm 127

backtrack on (Fk, γk,ASk) with the pair (cell∗, ω∗).

We call the tuple (cell∗, ω∗, (Fk, γk,ASk), (F′k+1, γ
′
k+1,AS′k+1)) a failed back-

track if there exists a natural number r such that the following conditions

hold:

• There exists cello such that AS′k+r(cell
o) = ∅.

• (F′k+1, γ
′
k+1,AS′k+1) precedes (F′k+r, γ

′
k+r,AS′k+r).

Now, the scenario is called failed backtrack because before the backtrack

we had a setting (Fk, γk,ASk), and after performing the backtrack we ended

up with (F′k+1, γ
′
k+1,AS′k+1), which is not a setting, as we prove below.

Lemma 4.2.8. For a failed backtrack

(cell∗, ω∗, (Fk, γk,ASk), (F′k+1, γ
′
k+1,AS′k+1))

, the semi-setting (F′k+1, γ
′
k+1,AS′k+1) is not a setting.

Proof. By definition of failed backtrack we have that there exists a natural

number r such that (F′k+r, γ
′
k+r,AS′k+r) is not a setting and

(F′k+1, γ
′
k+1,AS′k+1) precedes (F′k+r, γ

′
k+r,AS′k+r). Now, by applying the

logically equivalent contrapositive of Lemma 4.2.5 we can conclude that

(F′k+1, γ
′
k+1,AS′k+1) is not a setting.

With the previous argument, we can conclude that if we recognize a failed

backtrack we can apply the following and last setting updating function f6

to the original setting (Fk, γk,ASk):

(Fk+1, γk+1,ASk+1) = f6((Fk, γk,ASk), (cell
∗, ω∗))

= (Fk, γk, f3
6 (ASk, cell

∗, ω∗)

where, for every cell ∈ G :



4. The Solveku Algorithm 128

ASk+1(cell) = f3
6 (ASk, cell

∗, ω∗)
∣∣
cell

=

ASk(cell) if cell 6= cell∗

ASk(cell) \ {ω∗} if cell = cell∗

Finally we need to prove that the result of f6 is in fact a setting. Recall

that f6 is only applied after a failed backtrack.

Theorem 4.2.9. For a setting (Fk, γk,ASk) of a puzzle (n,F0, γ0). Assum-

ing (cell∗, ω∗, (Fk, γk,ASk), (F′k+1, γ
′
k+1,AS′k+1)) is a failed backtrack, then

(Fk+1, γk+1,ASk+1) = f6((Fk, γk,ASk)) is a setting.

Proof. By Lemma 4.2.8 we have that (F′k+1, γ
′
k+1,AS′k+1) is not a setting.

Let γ be a solution such that γ(cell) ∈ ASk(cell) for every cell ∈ G. Now,

since (F′k+1, γ
′
k+1,AS′k+1) is not a setting, then AS′k+1 is not a valid available

set function. Therefore γ(cell∗) /∈ AS′k+1(cell∗) since it is the only difference

between AS′k+1 and ASk. Finally, we can conclude γ(cell∗) 6= ω∗, therefore

(Fk+1, γk+1,ASk+1) is a setting.



4. The Solveku Algorithm 129

4.3 Structure of the algorithm

We will now put together all of the stages plus the backtrack to form the

complete Solveku Algorithm. First of all, as we said at the beginning of

the chapter, there are some interesting details in the actual implementation

of the algorithm, which explain how the implementation subsection of all

stages is placed together in one algorithm. However, these details are not

necessary to understand the logic of the algorithm; thus, they are placed

in the implementation subsection at the end of this section and will only

make sense if the reader has gone through the implementation part of every

stage.

The implementation sections of each stage exhibit a way to find a suffi-

cient scenario. By scenario we mean the special case needed to apply the

technique of the stage, for instance, a hermit in stage 2, or an internal

subset in stage 4. Moreover, the algorithms shown in each stage not only

show how to find a scenario, they guarantee that if the scenario exists in

the received setting, they will find it. Therefore, in this algorithm descrip-

tion, we take for granted the search of a particular scenario and ask if the

scenario exists.

Before proceeding with the algorithm, it is important to mention that

Solveku is a recursive algorithm, meaning that it may be called by itself

multiple times. This happens because backtracking is a recursive technique.

Let us briefly introduce how this recursion works.

The Solveku algorithm receives a semi-setting (F′k, γ′k,AS′k). First, Solveku

will be called with an initial state of a puzzle, if the stages are unable to

find the solution by themselves, the algorithm will backtrack with the best

rated candidate by BR. Then, Solveku will be called with the semi-setting

obtained by the backtrack and start to apply the stages all over again. If

Solveku is unable to find solutions to the semi-setting resulted from the



4. The Solveku Algorithm 130

backtrack, we have encountered a failed backtrack and we can apply f6 to

the setting we had before the backtrack.

Input: A (semi-)setting sk = (Fk, γk,ASk)

while ASk(cell) 6= ∅ for every cell ∈ G and Fk 6= G do

if There exists a Singleton (cell∗) on sk then
sk ← f1(sk, cell

∗)

else if There exists a Hermit (S, ω) on sk then
sk ← f2(sk, (S, ω))

else if There exists a Bracket Intersection (Sr,St, ω) on sk then
sk ← f3(sk, (Sr,St, ω))

else if There exists a Bracket Subset (W,W,S) on sk then
sk ← f4(sk, (W,W,S))

else if There exists an Orthogonal Subset (R,C, ω) on sk then
sk ← f5(sk, (R,C, ω))

else
Let (cell∗, ω∗) be the highest BR rated couple.

Let s′k be the result of backtracking on (cell∗, ω∗)

if Solveku(s′k) finds a solution then
return Solveku(s′k)

else
We have a failed backtrack

sk ← f6(sk, (cell
∗, ω∗))

end

end

end

if Fk = G then
return γk

else
sk does not have solutions.

end

Algorithm 2: Solveku Algorithm

Now, let us make a couple of clarifications. First of all, in the last chapter,

we did not define f4, but we use it in Solveku. We used it to simplify the

contents of the figure of the algorithm; in fact, the algorithm checks for

both types of subsets, naked and hidden, and applies both fN4 and fH4.



4. The Solveku Algorithm 131

The same happens for f5 with row-sourced and column-sourced orthogonal

subsets. Finally, our implementation verifies that the subsets found are not

isolated, because if we do not, then we may find a subset that does not do

any pruning at all, which if not avoided might end up in a infinite while

loop.

Taking those considerations into account, we can now be certain that the

algorithm never becomes an infinite loop. First, we know that if the algo-

rithm falls in one of the first five conditions, then the function will always

prune the candidates from ASk, and since the grid has a finite number of

cells and candidates, we cannot end up in an infinite loop. If we backtrack,

we are pruning as well, s′k has all the candidates except ω∗ removed from

ASk(cell
∗). So Solveku is called with fewer candidates, and if the backtrack

ends up failing, we remove ω∗ from ASk(cell
∗) so by the same finite candi-

date argument we can assert that the algorithm never falls into an infinite

loop.

Now, the algorithm stated above is a simplification of the actual algo-

rithm; next, we will discuss in more depth the code implementation of the

algorithm which has some small discrepancies from the algorithm stated

here due to performance reasons.

4.3.1 Implementation

First, let us explain some of the most important discrepancies between the

actual code and the algorithm stated above. Recall that stage 1 and 2 are

the only ones that fix values to cells, while the latter three just prune the

available sets of some cells.

Also, remember that the time complexity of the first three stages is poly-

nomial in n, while the time complexity of stages four and five is exponential

in n. We know that an exponential function grows much faster than poly-



4. The Solveku Algorithm 132

nomial functions. For this reason, the first three stages go through the

whole grid (stages one and two) and through all the brackets (stage three),

even though they find the corresponding special case they are looking for,

hoping to find another one. This does not happen in our implementation

for stages four and five.

Stages four and five stop when they find a subset that holds the conditions

they are looking for, just as we showed in the algorithm. Stages four and

five stop because their time complexity is high, so the added time to keep

looking for other subsets once they have found one can be considerable,

whereas, thanks to the new prune, new singletons or hermits could be

found in a polynomial time. Stages four and five depend on an external

parameter m that represents the size of the subset they are looking for.

Recall that the time complexity of finding subcovers depends on n as

well as on m. Therefore, we want to keep m as low as possible.

It does not make sense to look for naked or hidden subsets of size m with

bn2 c ≤ m, because if we have a naked subset of size m with bn2 c ≤ m, we

know that there exists a complementary hidden subset of size n−m ≤ m.

Then, it is more convenient to look for the hidden subset of size n − m,

since the time complexity will be lower than to look for the naked subset

of size m. The exact same thing happens when we look for a hidden subset

of size m with bn2 c ≤ m. We can conclude that we should only look for

subsets with a size smaller than or equal to bn2 c.

The just-described upper bound can also be applied to orthogonal sub-

sets. We proved the existence of complementary subsets for orthogonal

subsets as well. With the same objective, it does not make sense to look

for a row-sourced orthogonal subset of size m, with bn2 c < m, if we can

look, with a lower time complexity, for a column-sourced orthogonal subset

of size n−m.



4. The Solveku Algorithm 133

So, in the way this is actually implemented, we iterate for the valid m

values, and for each value we look for subsets of that size before increment-

ing m, which is the most efficient way to look because the time complexity

depends on m.

Finally, in the algorithm, we stated that we recognize that the input has

no solution when there exists a cell such that ASk(cell) = ∅. In the code

we actually implemented other flags to catch earlier if there are possible

solutions or not. For instance, we check if the union of all the available sets

of all the cells in a bracket is not Ω then there can be no unique solution.

These are just performance shortcuts that do not have any impact on the

logic of the algorithm.

The implementation of our algorithm is open source, so you can check

and correct if necessary the implementation of the Solveku algorithm. See

https://github.com/licesma/Solveku.

https://github.com/licesma/Solveku


4. The Solveku Algorithm 134

4.4 Performance of the algorithm

For testing the algorithm we use a database that contains 4982 puzzles, the

database was created by us using different generators and sources [Stu08]

[Par16] [Eas22] [Jel06]. We believe that using a larger database is unneces-

sary since most of the sudoku puzzle databases and resources out there are

algorithm-generated, which means that many of their puzzles share lots of

patterns that will result in similar solving times. So, adding all of them

would just add some noise to our analysis.

By using different generators and sources, we ensure more realistic results

because that way we minimize the chances of having better results just be-

cause the generator shares features with our algorithm. The database con-

tains only well-defined sudoku puzzles, meaning there is only one solution

to each of them.

First, we analyze the behavior of our algorithm with different puzzles,

which will help us to understand how our algorithm works. We will check

which of the stages are used more, and how many times each of them are

used for puzzles. Afterwards, once we understand how Solveku is behaving,

we are going to compare its running time with other algorithms and see its

efficiency.

To understand the behavior of different algorithms, we will group the

puzzles (n,F0, γ0) by hint count, that is, they will be grouped by |F0|. Of

course, given that two puzzles have the same number of clues does not mean

that the solving times for them will be the same, however, the solving times

tend to decrease when the number of hints increases. So, in a general sense,

sudoku puzzles with the same number of clues behave similarly.



4. The Solveku Algorithm 135

4.4.1 Behavior of Solveku

We want to see how often each stage is used for reaching a solution of a

puzzle. Let us clear something out, we are going to count how many times

a stage is applied to a setting if and only if the stage updated the setting

either by pruning an available set or by attesting a new value. Also, if a

wrong assignation was done while backtracking, then all the stages applied

to the puzzles whose origin was this assignation will not be counted. In

other words, we will only count the stages that affect the puzzle and that

lead directly to a solution.

While the pruning stages (3,4,5) reduce the available set of some cells,

the attesting stages (1,2) are the ones that assign values to the puzzle and

therefore are necessary to solve it. Thus, it is expected that the attesting

stages will be used more than the pruning ones. The graph in Figure 4.1

shows the average of the instances of each stage grouped by the number of

hints.

Even though our database has puzzles with up to 50 hints, for this graph,

we only use the ones with fewer than 36 because after that most puzzles are

solved almost trivially with one stage. In the pruning stages in the graph

we have grouped stages three, four and five, backtracking and backtracking

prune. We can see that stage one is more used than stage two. This makes

sense since stage one is executed first. Actually hermits are a generalization

of singletons, so all the singletons could also have been detected by the stage

two if stage one was not implemented. On average, our database has about

150 puzzles per hint.



4. The Solveku Algorithm 136

17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0
Hint count

0

2

4

6

8

10

12

14

Av
er

ag
e 

In
st

an
ce

s
Stage One
Stage Two
Prunning Stages

Figure 4.1: Usage of stages of Solveku.

Now, let us focus on the pruning stages and see how their usage is dis-

tributed. In the graph in Figure 4.2 we no longer track the attesting stages

and we focus on the pruning stages. We refer to failed backtracks as Back-

track Prune since we do a prune of the candidate that we erroneously

decided to backtrack with, whereas Backtrack represent the correct back-

tracks that lead us to a solution. We can see that Stage three and Backtrack

Prune are the most broadly used, while Stage five is the least. The fact

that Backtrack Prune is more used than some pruning stages does not mean

that our heuristic is not good. In fact, we can see that in the worst case

(25 hints) its average is approximately one. This means, in the worst case,

that we have, on average, one erroneous backtrack per puzzle, which is



4. The Solveku Algorithm 137

quite successful.

Also, the fact that Stage 3, 4, and 5 are not used much does not mean

they are not useful. Remember that when one of these is used and actually

prunes the puzzle, the stages are executed again from the top. This means

that one execution of these stages can create a ripple effect, this can result

in fewer overall backtracks.

17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0
Hint count

0.0

0.5

1.0

1.5

2.0

Av
er

ag
e 

In
st

an
ce

s

Stage Three
Stage Four
Stage Five
Backtrack Prune
Backtrack

Figure 4.2: Usage of pruning stages of Solveku.

We have now analyzed how often all stages are used to reach a solution.

Now, we are going to run the algorithm and see what happens if we do

not use a specific stage. This will help us to understand which stages are

indispensable for the algorithms and which not so much. This time we are

going to test all the puzzles, and group them, again, by number of hints.



4. The Solveku Algorithm 138

In Figure 4.3 we can see the crucial importance of stage one, stage two,

and stage three. In the case when stage two is missing and the number of

hints is low, we can see we have an outstanding increment on time, and the

same effect with less magnitude happens when stage three is missing. Also,

with with both stage one and two, we can see an increment of time in the

puzzles peaks of the graph. Even though the algorithm without stage two

seems very high at the beginning, a 60 ms average is a pretty good time for

solving a sudoku puzzle, as we will see in the following subsection. When

stage four and five are missing, we actually see, with a small hint count, a

little reduction of time, but it is not considerable. This can be explained

by the fact that subsets are not very common, but does not mean that the

stages are not useful because when they are used the solving time of those

puzzles is reduced significantly. However, since they are not used much,

the average increments only in some cases. It becomes then a matter of

choice whether or not to use them, depending on which aspect we are more

willing to sacrifice. After 35 hints we can see that all the algorithms behave

approximately the same way, this is due to the fact that most of them are

solved trivially by either stage one or stage two.



4. The Solveku Algorithm 139

20 25 30 35 40 45 50
Number of hints.

0

10

20

30

40

50

60
Av

er
ag

e 
tim

e 
(m

s)
.

Solveku
No Stage One
No Stage Two
No Stage Three
No Stage Four
No Stage Five

Figure 4.3: Solveku stage deletion comparison.

Let us now compare the Solveku Algorithm with the most popular algo-

rithms for solving sudoku puzzles, first let us give a little context on the

algorithms we are comparing.

Plain backtracking is the most popular algorithm for solving a sudoku

puzzle because of its straightforward implementation, the one we used to

compare was implemented by us as well. The linear programming algorithm

uses the python library pulp and treats the Sudoku puzzle as an integer

linear programming problem and solves it using a discrete variation of the

Simplex Algorithm and other different popular linear programming algo-

rithms. Dancing links is an algorithm created by Donald Knuth which is

a variation of backtracking, just as Solveku, which has been widely known



4. The Solveku Algorithm 140

for having great results when applied to sudoku puzzles.

There are, of course, other algorithms that use artificial intelligence, like

us, to solve Sudoku puzzles, however finding them is not an easy task

because of the following reason: The advantage of having an algorithm

that uses human-like techniques to solve Sudoku puzzles is that by using

it backwards, it allows you to create brand new Sudoku puzzles where you

can control which techniques are necessary to solve them, therefore, you can

control the difficulty of the generated puzzles. This characteristic makes

this type of algorithms profitable because they can produce new puzzles

which can then be included in newspapers or magazines. We found one

open source artificial intelligence algorithm on Github but this algorithm

ended up not solving some puzzles correctly. Therefore, we decided not to

include it at all.

In Figure 4.4 we can see that the linear programming algorithm and

Dancing Links are not affected by the number of hints in a puzzle. Even

though it is not affected by the number of hints, we can conclude that

solving a puzzle by linear programming is way worse than using Solveku

or Dancing Links. Meanwhile, backtracking grows exponentially when the

number of cells without a hint grows, but then, it also becomes the fastest

when the puzzles have a lot of hints. However, this does not compensate

for its terrible behavior when the hint count is small.



4. The Solveku Algorithm 141

20 25 30 35 40 45 50
Number of hints.

0

10

20

30

40

50

60

70

80

90
Av

er
ag

e 
tim

e 
(m

s)
.

Solveku
Backtacking
Linear Programming
Dancing Links

Figure 4.4: Sudoku solving algorithm time comparison.

It seems that the only real competitor for Solveku is Knuth’s Dancing

Links algorithm. Let us take a closer look, focusing only on this pair of

algorithms.

In Figure 4.5 we can see how Dancing Links is amazingly unaffected by

the number of hints in a puzzle. Now the differences are from one side,

the peaks of Solveku are big on 22 and 25 hints. From the other side, the

fact that dancing links is not affected by the number of hints plays badly

against it after 30 hints, since Solveku times drops rapidly.



4. The Solveku Algorithm 142

20 25 30 35 40 45 50
Number of hints.

0

2

4

6

8

10

12

14

16

Av
er

ag
e 

tim
e 

(m
s)

.
Solveku
Dancing Links

Figure 4.5: Comparison between Solveku and Dancing Links.

Let us now have a look at a box plot of each of the algorithms to better

understand if the peaks of Solveku affect its overall performance badly.

Box plots are a very popular way to compare two distributions of really

big data. These type of plots use the best known statistics so that one can

easily compare both distributions.



4. The Solveku Algorithm 143


































































Top whisker

Top whisker

Median

Bottom whisker

Median
Q3

Q3

 Q1

 Q1

Bottom whisker

Figure 4.6: Box plot comparison between Solveku and Dancing Links.

We need the definition of percentile to understand the box plot graph.

We now give a simplified definition of discrete quantiles which will be a

foundation for our definition of percentile.

Definition 4.4.1. For a collection of values X = (x1, x2, . . . , xα), we define

the accumulation function a : X → [0, 1] as follows:

a(xi) =
|Li|
α

where Li = {xj : xj ≤ xi for j ∈ {1, . . . , α}}

Definition 4.4.2. For a collection of values X = (x1, x2, . . . , xα) we define

pk for k ∈ {1, . . . , 100} is the kth percentile of X as follows:

pk := xi such that | k
100
− a(xi)| ≤ |

k

100
− a(xj)| for every j ∈ {1, . . . , α} .

Note that xi might not be unique, then, if there exists a sub collection

(x1, . . . , xt) ⊆ X such that they all hold the above condition then pk equals



4. The Solveku Algorithm 144

the mean of the sub collection.

Note that the accumulation function is different from the cumulative

distribution function since X is not required to be a distribution for cal-

culating our accumulation function. A box plot is a standardized way of

displaying the distribution of data based on a five number summary. In a

box plot, the bottom box line Q1 represents the 25 percentile p25 and the

top box line Q3 is the 75 percentile p75, respectively. The line in the inside

of the box represents the median, that is the 50 percentile. The horizon-

tal lines outside the box are called whiskers, the bottom whisker value is

Q1 − 3
2 · (Q3 −Q1) and the top whisker value is Q3 + 3

2 · (Q3 −Q1). In this

box plot we can see that most of the distribution of the Solveku times are

smaller than most of the distribution of Dancing Links.

Fig 4.4.1 shows a box plot; the circles outside the whiskers are outliers

whose maximum and minimum can be found in the following table (ms is

an acronym for milliseconds).

Table 4.1: Solveku and Dancing Links statistic comparison

Metric Solveku Dancing Links

Mean 2.6071 ms 6.8387 ms

Std. Deviation 6.1837 ms 1.1482 ms

Minimum 0.8648 ms 5.6753 ms

25 percentile 1.2548 ms 6.1604 ms

50 percentile 1.5207 ms 6.4834 ms

75 percentile 1.9565 ms 7.1175 ms

Maximum 96.7031 ms 29.2785 ms



4. The Solveku Algorithm 145

As we have seen earlier, on first look Solveku seems a better choice since

its mean and every quartile is smaller than Dancing Link’s

Nevertheless, Dancing Link’s standard deviation is significantly smaller

than Solveku’s. This means most of Dancing Link’s times are clustered

around its means and there are only a few outliers.

Now, focusing on the distribution between 25 and 75 percentiles, it lies

between [6.1604 ms, 7.1175 ms]. This is an extremely small range, its length

is only 0.9571 ms, which is less than a millisecond, recall that a millisecond

is one thousandth of a second. However, for Solveku, even though it has

a much bigger standard deviation, if we take the half of the distribution

with a smaller standard deviation, that is, the distribution between the 25

and 75 percentile, we get the rage 1.2548 ms, 1.9565 ms. The length of this

range is 0.7017 ms which is even smaller than Dancing Links’. This means,

that even though the standard deviation of Solveku is higher than Dancing

Link’s, the mean’s closest half of the distribution is closer in Solveku than

in Dancing links, therefore the difference in standard deviations is due to

outliers.

We can conclude that Solveku is a faster algorithm to the point that

Dancing Links’ minimum is bigger than Solveku’s 75 percentile, with a

190% difference. Nonetheless, Dancing Links has a smaller standard devia-

tion, due to Solveku’s outliers. So Dancing Links will be a better fit if and

only if outliers are unacceptable.



M 146

Chapter 5

Conclusions

This final chapter is divided into two parts. First, we explain a little bit

more about why this work was done and how it was done. Then, we explore

what, we think, are the most important contributions of this work and the

potential impact of these contributions.

5.1 Why and how

When a person solves a sudoku puzzle they get just a glimpse of its infinite

hidden logic. Before this project was conceived, we, avid sudoku solvers,

started subtracting some patters out of this hidden mystery by solving

sudokus by hand and paper. After some time we decided to not settle with

the glimpse, and test how infinite really was this hidden logic.

The decision of creating an algorithm comes from a project in the first

year of college that consisted in creating a backtracking sudoku solver. This

algorithm was able to solve most algorithms, which was exhilarating, until

we found the worst-case puzzle for backtracking. This puzzle is unfeasi-

ble for a backtracking algorithms [Ric08], because it is designed to make

the standard backtracking algorithms to make as many failed backtracks

as possible, taking advantage of the fact that standard backtrack starts



5. Conclusions 147

assigning candidates in ascending order.

The fact that the worst-case puzzle could be easily solved by hand by any

normal person motivated the fundamental question of this work: “What

if we provide a little bit of intelligence to our backtracking algorithm?”.

This little bit of intelligence is now known as Stage 1, and it allowed the

algorithm to solve the worst case puzzle in less than a couple of seconds.

Eventually, the founding question evolved into “how smart can this thing

get?”. As a result of this evolution we then wanted to state a finite number

of techniques, and create an algorithm that using a combination of these

techniques would be able to solve any Sudoku puzzle.

We started by analyzing and decomposing, step by step, our thinking

process when solving a puzzle by hand. This analysis originated the first

four of the five techniques presented here, meaning they were discovered

by ourselves. Therefore, some techniques can be found in other works with

different names. For the last technique, we think of it as a tribute to James

Gould, who we introduced in Chapter 1 as a fundamental person in the

popularization of Sudoku puzzles.

We saw a video in which Gould explained the “x-wing” technique. We

were inspired by this technique, and generalized it to create orthogonal

subset prune. The “x wing” is a row-based orthogonal subset of size two.

Finally, since these five techniques were not enough to solve every puzzle,

we decided to keep backtracking in our algorithm to allow it to be able to

solve any puzzle. However, standard backtracking can be pretty inefficient,

so we decided to improve it with a new “smart backtracking”. For this, we

were motivated by the “Search lecture” from the online Harvard’s course

“Introduction to artificial intelligence”, where David Malan describes how

can a search algorithm can be optimized using artificial intelligence [Mal20].



5. Conclusions 148

5.2 Contributions and impact

This work provides two major contributions. An open source sudoku solv-

ing algorithm, which is itself a substantial contribution since it is faster

than most of the online algorithms available from free. Furthermore, this

work also provides a rigorous sudoku theory which is fundamental for the

Solveku Algorithm, besides, it can help anyone, with a math background,

formalize ideas and patterns about a sudoku puzzle.

Apart from those two major contributions, one thing that sets this work

apart is the fact that the algorithm and its theory were made to solve any

n× n sudoku puzzle, not just the standard 9× 9. This is one of the things

that could have been done differently, since sudokus larger than 9 × 9 are

not very popular. However, we think that the impact on generalizing the

algorithm’s size is beyond the popularity of larger puzzles, as we explain

below.

All the algorithms that just solve 9 × 9 sudoku puzzles have a constant

computational time complexity. This happens because time complexity

relies on variability, and the puzzle has a fixed sized and number of symbols,

hence a fixed number of computations will guarantee its solution. Not being

able to calculate a computational complexity is a problem because it means

we do not have a way of theoretically comparing algorithms; they can only

be compared empirically. Generalizing the puzzles to size n× n allowed us

to calculate computational complexities of the stages. Being able to show

a time complexity is one of the main motivations to include code on this

work, which is another thing that could have been done differently, since it

is not the standard in mathematical documents.

Having a time complexity for stages is useful in many ways, first of all, we

can compare between stages in a straightforward manner. Furthermore, as-

suming we are only interested in the 9×9 standard sudoku puzzles, having



5. Conclusions 149

a theorical result on how an algorithm will behave on bigger puzzles gives

us insight on how is it going to behave on 9× 9 grid. With this principle,

we introduced a way of theoretically comparing sudoku solving algorithms.

First, generalize to n× n puzzles. Then compare time complexities of the

generalized versions of the algorithm. Finally, apply the comparisson to

the fixed standard size we were interested in. In the words of the philoso-

pher Georg Wilhelm Friedrich Hegel, “Singular substrates or essences can

only be known in relation to the general properties that constitute their

appearances.”

Finally, when we analyzed the behavior of Solveku in Chapter 4, we saw

Solveku’s hegemony over the rest of algorithms. Moreover, we analyzed

some metrics on how the algorithm works, meaning which stages are more

useful for Solveku. This analysis is an important contribution because it

can help both, persons that solve algorithms by hand and developers of new

sudoku solving algorithms. Even though Solveku does not solve a puzzle

exactly like a person, we can deduce that if a stage is crucial for Solveku,

it would be a good idea to apply it when solving puzzles by hand. Also,

future competitor algorithms, can take a look at this analysis and decide

which stages should be reused and which should not, according to their

needs.



M 150

Bibliography

[Bel21] Alex Bello. Maki taji orbituary, ’godfather of sudoku’ who

paved the way for the worldwide boom in number puzzles,

Aug 2021. https://www.theguardian.com/world/2021/aug/20/

maki-kaji-obituary.

[Ber07] Denis Berthier. The Hidden Logic of Sudoku (Second Edition). Lulu

Press, 2007.

[Cam21] Olivia Campbell. Maki kaji: Godfather of sudoku and puz-

zle enthusiast. https://www.independent.co.uk/news/obituaries/

maki-kaji-sudoku-puzzles-obituary-death-b1907694.html, 2021.

[Che16] Haradhan Chel. A novel multistage genetic algorithm approach for

solving sudoku puzzle, March 2016. https://www.researchgate.net/

publication/311250094.

[Eas22] Easybrain. Sudoku, may 2022. https://sudoku.com/.

[Fis74] Sir Ronald A. Fisher. The Design of Experiments. Collier Macmillan,

7th edition, 1974.

[HL14] Mattias Harrysson and Hjalmar Laestander. Solving sudoku efficiently

with dancing links, March 2014. https://www.kth.se/social/files/

58861771f276547fe1dbf8d1/HLaestanderMHarrysson_dkand14.pdf.

[Jel06] Ernie Jellinek. Sudoklue, January 2006. https://www.learn-sudoku.

com/.

[Mal20] David Malan. Cs50’s introduction to artificial intelligence with python,

April 2020. https://cs50.harvard.edu/ai/2020/weeks/0/.

[MG13] Civario Gilles Mcguire Gary, Tugemann Bastian. There is no 16-clue su-

https://www.theguardian.com/world/2021/aug/20/maki-kaji-obituary
https://www.theguardian.com/world/2021/aug/20/maki-kaji-obituary
https://www.independent.co.uk/news/obituaries/maki-kaji-sudoku-puzzles-obituary-death-b1907694.html
https://www.independent.co.uk/news/obituaries/maki-kaji-sudoku-puzzles-obituary-death-b1907694.html
https://www.researchgate.net/publication/311250094
https://www.researchgate.net/publication/311250094
https://sudoku.com/
https://www.kth.se/social/files/58861771f276547fe1dbf8d1/HLaestanderMHarrysson_dkand14.pdf
https://www.kth.se/social/files/58861771f276547fe1dbf8d1/HLaestanderMHarrysson_dkand14.pdf
https://www.learn-sudoku.com/
https://www.learn-sudoku.com/
https://cs50.harvard.edu/ai/2020/weeks/0/


Bibliography 151

doku: Solving the sudoku minimum number of clues problem via hitting

set enumeration, August 2013. https://arxiv.org/abs/1201.0749.

[Pap14] Christos Papdimitriou. Algorithms, complexity, and the sciences, Oc-

tober 2014. https://www.pnas.org/doi/10.1073/pnas.1416954111#

executive-summary-abstract.

[Par16] Kyubyong Park. 1 million sudoku games, August 2016. https://www.

kaggle.com/datasets/bryanpark/sudoku.

[Par18] Kyubyong Park. Can convolutional neural networks crack sudoku puz-

zles?, August 2018. https://github.com/Kyubyong/sudoku.

[Ric08] Alan Rico. Star burst polar graph, March 2008. https://www.flickr.

com/photos/npcomplete/2361922699.

[San09] Anders Sandberg. Venn and fisher window, January 2009. https:

//www.flickr.com/photos/arenamontanus/3212655985.

[Sho06] Will Shortz. The 2006 time 100, wayne gould, May 2006.

http://content.time.com/time/specials/packages/article/

0,28804,1975813_1975838_1976198,00.html.

[Smi05] David Smith. So you thought sudoku came from the land of the rising

sun ..., May 2005. https://www.theguardian.com/media/2005/may/

15/pressandpublishing.usnews.

[Stu08] Andrew Stuart. Sudoku wiki, April 2008. https://www.sudokuwiki.

org/.

[Van19] Robert Vanderbei. Sudoku via optimization, October 2019. https:

//vanderbei.princeton.edu/tex/talks/INFORMS_19/Sudoku.pdf.

[WW11] J.C. George W.D. Wallis. Introduction to combinatorics, Page 212. CRC

Press, 2011.

https://arxiv.org/abs/1201.0749
https://www.pnas.org/doi/10.1073/pnas.1416954111#executive-summary-abstract
https://www.pnas.org/doi/10.1073/pnas.1416954111#executive-summary-abstract
https://www.kaggle.com/datasets/bryanpark/sudoku
https://www.kaggle.com/datasets/bryanpark/sudoku
https://github.com/Kyubyong/sudoku
https://www.flickr.com/photos/npcomplete/2361922699
https://www.flickr.com/photos/npcomplete/2361922699
https://www.flickr.com/photos/arenamontanus/3212655985
https://www.flickr.com/photos/arenamontanus/3212655985
http://content.time.com/time/specials/packages/article/0,28804,1975813_1975838_1976198,00.html
http://content.time.com/time/specials/packages/article/0,28804,1975813_1975838_1976198,00.html
https://www.theguardian.com/media/2005/may/15/pressandpublishing.usnews
https://www.theguardian.com/media/2005/may/15/pressandpublishing.usnews
https://www.sudokuwiki.org/
https://www.sudokuwiki.org/
https://vanderbei.princeton.edu/tex/talks/INFORMS_19/Sudoku.pdf
https://vanderbei.princeton.edu/tex/talks/INFORMS_19/Sudoku.pdf

	Symbols
	Introduction
	The puzzle
	The history
	Theory introduction
	The mathematics of sudoku
	Solving Algorithms

	Attesting stages of Solveku
	Fundamental code
	Stage One, Singletons
	Stage Two, Hermit

	Pruning sections of Solveku
	Stage Three, Bracket Intersection
	Stage Four, Bracket subset
	Stage Five, Orthogonal subsets

	The Solveku Algorithm
	Backtracking
	Sudoku theory
	Structure of the algorithm
	Performance of the algorithm

	Conclusions
	Why and how
	Contributions and impact


